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1 Multi-layers of amphiphilic molecules and their production

Long-chain molecules whose different parts are solvable in different solvents are called am-
phiphiles. Usually they consist of one hydrophilic, water-soluble head-group and a hydrophobic,
water-rejecting alkyl chain. If one brings amphiphiles on a water-air interface in a suitable con-
tainer, then the alkyl-chains are rejected from the surface and only the head-groups remain
within the water. This situation is called gas-analogue state. The molecules are relatively
loosely arranged on the water surface(fig. 1 (a)). Now, if the molecules are compressed on
the water surface through a movable barrier, it comes to a decrease of the free space available
for each molecule and subsequently to a steeper assembly of the chains (liquid-analogue state,
fig. 1 (b)). In the case of further decrease of the available space it comes to a direct repulsive
interaction between individual chains and the angle between the chains and the water surface
approaches 90°. The amphiphiles are now regularly arranged (solid-analogue state, fig.1 (c)).

The self organization of amphiphilic molecules on water surfaces was discovered in 1917 by
Langmuir [5]. Therefore, these mono layers are called Langmuir-films. In 1937, Blodgett and
Langmuir reported for the first time of the deposition of such mono layers on firm carriers
(Langmuir Blodgett (LB) films)[3].

(a) gas-analogue (b) liquid-analogue (c) solid-analogue

Figure 1: Phases

For the production of multi-layers from such Langmuir-films one uses a special Langmuir-
Blodgett-trough (fig. 2). In such a trough, a solid-analogue phase of the molecules is produced.
The Wilhelmy plate in illustration 2 serves for the determination of the surface preasure. With
this information, the barrier can be steered in such a way, that the molecules are always in
the desired phase. Now a suitable carrier (e.g. a silicon waver) is inserted slowly into the
trough and pulled out again. If the carrier is hydrophobic, the molecules deposit themselves
with their hydrophobic ends on the substrate during this first dipping. During the following
pulling out a second layer of molecules is deposited in such a way, that headgroup comes to
be on headgroup. One has now a double layer of the molecules on the carrier, whereby the
outside layer is again hydrophobic, so that the procedure can be repeated. Altogether one
receives a straight number of mono layers on the ,tauchzyklensubstrate. (fig. 3 left).
If one uses a hydrophilic carrier, then the molecules deposit themselves on the carrier - in this
case with the headgroup downward - during the first pulling out. Thus an odd number of
mono layers can be produced (fig.3 right)
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Figure 2: LB-trough for the production of LB-films

Figure 3: Preparation of LB-films with even or odd number of monolayers

1.1 The box model and the example of amphiphile fatty acids and their
salts

An example of amphiphile molecules are salts of fatty acids. Fatty acids consist of a hydrophilic
COOH - headgroup and a hydrophobic hydrocarbon chain. Depending upon the length of the
hydrocarbon chain, one defines different fatty acids (see fig. 4(a)).
If salts are solved in the LB trough - e.g. PbCl2, they can dissipate under special conditions
and it is then possible that the proton (H) is removed from the hydrophilic head group of the
fatty acid and is replaced by the metal ion. So the bivalent lead-ion Pb2+ can bind two chains.
In the case of stearic acid and lead ions leadstearate (fig. 4(b) bottom) develops in this way.
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The electron density profile along the z-direction (perpendicular to the actual layers) of such
layered systems from fatty acid salts can be described by the so called box-model. One divides
a mono-layer into up to three boxes, to which in each case a thickness and a refractive index
is assigned. The particulars boxes are the hydrophobic end (- CH3), the chain with the
hydrophilic headgroup (- (COO)−1) and the metal ion (ref.4(b) top).
The length of a hydrocarbon chain can be computed to:

lKette =
(

n +
9
8

)
· 1.265Å (1)

where n is the number of carbon atoms (Stearate: n=18) and 1,265Åthe mean distance of two
CH2-groups, projected on the molecule axis [4].
A multi-layer system is composed of several mono layers. The reflectivity from this model can
be calculated (sees further below) and compared with the measured curve. A minimization of
the deviations from the actual data is then achieved by variation of the individual parameters
(thickness, electron density and roughness (see chapter 6)).

(a) Structure of different fatty acids (b) Box-model of a doublelayer Pb-Stearate

Figure 4:
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2 Literature

As literature to this experiment we recommend the lecture of "‘Elements of modern x-ray
physics"’ from Jens als Nielsen [2] and in particular chapter 3, pages 61 - 98 therein. Useful
information about the analysis can be found in the book from Pietsch et.al. , chapter 8 [7].

3 Refraction of X-rays

The refraction index n of a medium for electromagnetic radiation depends on the frequency ω
and thus the energy of the incoming wave. n(ω) shows resonates behavior if the energy of the
incoming wave corresponds to an electronic transition within the atoms of the material. Before
a resonant-frequency, n rises with increasing frequency (range of normal dispersion). Directly
above the resonant frequency n drops strongly and rises up to the next resonant frequency
again etc.. The higher the frequency, the smaller becomes the value of the refraction index
away from the resonant frequencies.
X-rays with energies around 10keV lie far above the binding energy of the most electrons of
an atom. This has the consequence, that the refraction index for X-ray of normal materials is
slightly smaller than 1. Usually one writes n in the form

n = 1− δ + iβ (2)

where the parameter δ considers the dispersion and β the absorption. These parameters
are related to the linear absorption coefficient µ and the electron density %e of the regarded
material via:

δ =
2π

k2
%er0 (3)

β =
µ

2k
(4)

k = 2π/λ is the wavevector of the incoming wave with wavelength λ and r0 the classical
electron radius. Typically, δ is of the order 10−6 and β another order of magnitude below this.
For the derivation of the formulas 3 and 4 we refer to the literature [2].

Snell’s law, well-known from the optics, holds also for x-rays: During the transition from a
medium with refraction index n1 to a medium with refraction index n2 the angles of incidence
and exit, respectively, are related through:

n1 cosα = n2 cosα′ (5)

In x-ray physics, the angles of incidence α and exit α′ are usually measured with respect to
the surface (see fig. 5).
For incident-angles below the critical angle α = αc it comes to total external reflection (α′ =
0°). If one inserts n1 = 1 (air), n2 = 1− δ and α′ = 0° into Snell’s law and expands the cosine
in a Taylor-series, then one receives the important relationship for the critical angle

αc =
√

2δ =
√

4π%er0

k
(6)

For Cu-Kα-radiation and e.g. for silicon on obtains values of δ = 7, 633 · 10−6 and thus a
critical angle of αc ≈ 0, 23°.
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Figure 5: Reflection and refraction of x-rays

4 Fresnel-reflectivity of a smooth surface

For the determination of the reflectivity of a plane x-ray wave at an ideal smooth surface
we can use the Fresnel-equations known from electrodynamics or optics. In our case, we
don’t need to differentiate between σ polarisation (electrical field-vector perpendicularly to
the diffraction plane) and π polarisation (el. field vector parallel to the diffraction plane) due
to the regarded small angles (in practice, reflectivity is usually examined up to an angle of
incidence of about 5°). From the Fresnel-equations for σ polarisation we obtain the relations
for the Fresnel reflection- and transmission coefficients for small angles:

r(α) :=
Er

Ei
=

α− α′

α + α′
(7)

t(α) :=
Et

Ei
=

2α

α + α′
(8)

These equations refer to the amplitudes of the electrical field. One receives the appropriate
coefficients R and T for the reflected and/or transmitted intensity through

RF (α) =
Ir

Ii
= |r|2 ; TF =

It

Ii
= |t|2 (9)

Here it is pointed out that the equations for the reflectivity always refer to so-called specular
reflection, i.e. that for the reflected wave the condition angle of incidence = angle of exit must
be fulfilled.

4.1 Penetration depth

From Snell’s law for the refraction at a boundary between air and a medium with refraction
index n = 1− δ + iβ

cosα = n cosα′

Taylor expansion for small angles leads to

α2 = α′2 + 2δ − 2iβ (10)

= α′2 + α2
c − 2iβ
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Thus equation 9 for the reflected intensity may be written as:

RF =

∣∣∣∣∣
α−

√
α2 − α2

c + 2iβ

α +
√

α2 − α2
c + 2iβ

∣∣∣∣∣
2

(11)

figure 6 shows the Fresnel-reflectivity RF as a function of the angle of incidence α for different
values of β/δ. One recognizes that the reflectivity does not necessary have to be constant
equal to 1 below the critical angle under any circumstances. Rather, a so called evanescent
wave runs parallel to the surface inside the material. This phenomenon is already well-known
from electrodynamics. The penetrating intensity is partly absorbed, whereby the reflectivity
is reduced. The penetration depth λ of the evanescent wave, i.e. the depth, on which the
penetrating intensity drops down to 1/e is given by

Λ =
1

2kIm(α′)
(12)
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Figure 6: The Fresnel-reflectivity of a silicon vacuum surface (αc = 0, 23°) as a function of
αi/αc for a wavelength λ = 1, 54 Å. The different lines show different conditions of β/δ from
0 over 1/50 up to 1/10.

4.2 Reciprocal space

In the reciprocal space or impulse space, incident and reflected wave (incident angle αi, exit
angle of reflected wave αf ) are described with their wave vectors ki and kf , where |~k| = 2π/λ.
In our geometry ki,kf and the surface-normal of the sample lie in a common plane, the
refraction-plane. The impulse transfers are

Qz =
2π

λ
(sinαi + sinαf ) (13)

and
Qx =

2π

λ
(cosαi − cosαf ). (14)

where the surface-normal defines the z-direction and x lies in the refraction-plane parallel to
the surface (fig. 5). In this coordinate system, we have Qy = 0. The vectors Qz, Qx and Qy

span the reciprocal space.
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In our case of specular reflectivity with αi = αf := α, 13 becomes:

Qz = 2k sinα (15)

The Fresnel’ reflectivity is than read as

RF (Qz) =

∣∣∣∣∣
Qz −

√
Q2

z −Q2
c + 2i(2k)2β

Qz +
√

Q2
z −Q2

c + 2i(2k)2β

∣∣∣∣∣
2

(16)

The advantage of this method is the elimination of all setup-specific factors of a measurement.
For large angles of incidence (α > 3αc) the Fresnel reflectivity can be replaced through

RF (Qz) ≈
(
2Qz

Qc

)−4
.

4.3 Surface-roughness

The previous considerations referred to homogeneous media with idealized, smooth surfaces.
At realistic samples however, no abrupt change in the the density and/or refractive index takes
place - the surface is always rough on atomic level (order of magnitude nm). This roughness
causes an intensity reduction of the specular reflected wave and additional diffuse scattered
intensity.
In order to determine the influence of these roughness on the reflectivity we examine the
laterally averaged electron density

ρe(z) =
∫ ∫

ρe(x, y, z)dxdy (17)

The transition of a medium 1 with the electron density ρe,1 into a medium 2 with electron
density ρe,2 can be described by a function f(z):

ρe(z) = ρe,1 + f(z) · (ρe,2 − ρe,1) (18)

For an ideally smooth surface, the change of electron density takes place abruptly, i.e. f(z)
is just a step function. For a real, rough surface one usually uses a normalized gaussian
distribution for the gradient of the electron density perpendicular to the surface:

df

dz
=

1√
2πσ2

e−
1
2( z

σ )2

(19)

The parameter σ therein is the rms (root mean square) roughness, i.e. in the case of a sharp
but however rough surface, σ2 is the root-mean-square deviation of the surface-height z(x, y)
from its mean value (see fig. 7).

nj=1-dj+ibj

nj+1=1-dj+1+ibj+1 Pj(z)

x

z

sjzj zj+z(x,y)

Figure 7: A rough surface with the mean height zj has fluctuations z(x, y) around this value.
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The reflectivity of a rough surface differs from the ideal Fresnel-reflectivity only noticeable for
angles above αc. The ration from the reflectivity of the rough surface R(Q) to the Fresnel-
reflectivity RF (Q) is given by

R(Q)
RF (Q)

=
∣∣∣∣
∫ ∞

0

(
df

dz

)
eiQzdz

∣∣∣∣
2

(20)

With the model from equation 19 one obtains the important relation

R(Q) = RF (Q)e−Q2σ2
. (21)

5 Reflection from a thin slab

For the calculation of reflection at multi-layer systems, it is first useful to regard the reflection
at only one thin layer with thickness ∆ and refraction index n1 on a substrate:

Figure 8: Reflection at a thin layer: The incident wave is reflected several times within the
layer. The reflectivity arises as a result of correct summation of the individual reflected
amplitudes.

The layer (1) sits on an "infinitely thick" substrate (2). Infinitely thick means that we can
neglect reflections at the lower surface of the substrate. The reflection- and transmission
coefficients for the transition air (0) - layer (r01, t01) and for the transition layer - substrate
(r12, t12) are well known on the basis of the considerations in the previous section. The entire
reflectivity rslab is now the result from the summation of all waves reflected at the different
boundaries (see fig. 8):

1. The wave with wave vector k, incident with the angle α, is first partly reflected at the
surface: amplitude A1 = r01

2. The wave that was transmitted with t01 is than partly reflected at the substrate and can
escape again partly into air: amplitude A2 = t01>r12t10. In relation to the first reflected
wave, this wave is now phaseshifted due to the way through the layer and back about a
factor p2 = eiQ1·∆ = ei2k1 sin α′·∆.

3. After another set of reflections at the upper and lower surface of the layer, a wave with
amplitude A3 = t01r10r

2
12t10 leaves into air. This is out of phase to the first reflected

wave by a factor p4.
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and so on...

The total reflectivity of the thin layer can be obtained by correct summation of the individual
amplitudes:

rSchicht = r01 + t01r12t10p
2 + t01r10r

2
12t10p

4 + ...

= r01 + t01t10r12p
2
∞∑

m=0

(r10r12p
2)m

= r01 + t01t10r12p
2 1
1− r10r12p2

(22)

If we consider the conditions r01 = −r10 and r2
01 + t01t10 = 1, following from the Fresnel-

equations, the reflection coefficient of a thin layer can be written as

rslab =
r01 + r12p

2

1 + r01r12p2
(23)

with p2 = eiQ1·∆ = ei2k1 sin α′·∆ and k1 = n1 · k.

The reflection coefficient for the intensity, |rschicht|2 shows the so-called "Kiessig oscillations"
due to the phasse-factor p2 with a period of 2π/∆. Illustration 9 shows the reflectivity of a
thin layer of tungsten with a thickness 10 · 2πÅ.

In the case of a substrate whose refraction index is smaller than that of the thin layer (n2 < n1),
there are maxima within the reflectivity whenever Q1 ·∆ is an integer multiple of 2π. With
consideration of Snells law, we have the m’th maximum at an angle of incidence αm given by

α2
m =

(
λ

2∆

)2

m2 + α2
c (24)

If we neglect the refraction effects (αc → 0) this is the well-known Bragg-equation for small
angles:

mλ = 2∆ sinαm (25)
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Figure 9: Kiessig-oscillations from a thin slab of tungsten

6 Reflection at multilayer systems - Parratts formalism

The result (23) can be extended to the case of a layer system consisting of N layers on a
substrate by a iterative procedure. This formalism was invented 1954 by Parratt and therefore
carries his names [6]
Let the layer system consist of N layers on an "infinitely thick" substrate. By definition, the
N’th layer sits on the substrate and the zeroth layer is air and/or the surrounding medium.
Each layer j has a refraction index nj = 1− δj + iβh and the thickness ∆j (fig. 10). From the
solution of the Maxwell equations at the boundaries it follows that the x-component of the
wavevector is conserved in all layers. For the wave vector in the layer j, the relation kj = njk
holds and therefore, the z-component of the wavevector within the layer j is given by

k2
z,j = (hjk)2 − k2

x

The wavevector transfer in the layer j is

Qz,j = 2kj sinαj = 2kz,j (26)
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Figure 10: Parratts formalism: composition of the multilayer system

If we neglect multiple reflections in a first step, the reflectivity at each interface between the
layers j and j + 1 can be calculated to(compare equ. (16))

r′j,j+1 =
Qz,j −Qz,j+1

Qz,j + Qz,j+1
(27)

Especial, the reflectivity between the lowest layer and the substrate can easy be calculated -
here there is no multiple reflection - and we receive

r′N,∞ =
Qz,N −Qz,∞
Qz,N + Qz,∞

(28)

Now we treat multiple reflections: The reflectivity at the interface between layer N and N-1
is exactly the case of a thin slab on a substrate and can therefore be described with equation
(23) as

rN−1,N =
r′N−1,N + r′N,∞p2

N

1 + r′N−1,Nr′N,∞p2
N

(29)

with the phase factor p2
j = eiQz,j∆j . (Notice the difference between r (including multiple

reflections) and r’(no multiple reflections)). With this reflectivity and equation 23 now again
the reflectivity between layer N-2 and N-1 can be computed to be

rN−2,N−1 =
r′N−2,N−1 + rN−1,Np2

N−1

1 + r′N−2,N−1rN−1,Np2
N−1

(30)

and so on, until we receive the reflectivity at the top of the multi-layer system.

13



The influence of roughness of the individual interfaces j on the specular reflected intensity can
taken into account by replacing the Fresnel coefficient by a new set of coefficients

r̃j+1,j = rj+1,je
−2kz,jkz,j+1σ2

j (31)

where σ is the rms (root mean square) roughness of the interface j (compare fig. 7).
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7 Instrumental setup

Illustration 11 shows the schematic setup of the diffractometer used for the reflection mea-
surement. The detector and the x-ray tube lie on a circle and can be rotated around the
common center, where the sample is placed. The detector is a scintillation counter/ photo-
multiplier with a monochromator-crystal placed in front. This serves for the fact that only the
Cu-Kα-radiation can reach the detector. For small angles, especially for αi < αc the reflected
intensity is so high that a saturation of the detector arises. In order to avoid this, the first
part of the reflectivity curve must be measured with a filter - simple a metal foil in suitable
thickness - before the detector. For larger angles one needs no more filter and it is useful to
increase the counting time per measured point to have better statistics.

Figure 11: 2-Circle diffractometer

The sample must be aligned in such a way, that the condition angle of incidence = angle of
exit is fulfilled. To achieve this, so called ω- scans must be performed. The sample is fixed in
the middle of the diffractometer and the scattering-angle 2θ, that is the angle between primary
beam and detector, is fixed to a constant value. However, it’s unlikely that the surface normal
the sample will be exactly vertical like in fig. 5 - there will be a certain angular deviation ω,
so the angle of incidence and exit become αi = θ+ω and αf = θ−ω, respectively. Because we
can not rotate the sample, we perform a scan where both x-ray tube and detector are rotated
simultaneously in the same direction. The measured intensity will be clearly peaked when the
specular reflection condition is met and the coordinate-system of our diffractometer can be
rearranged so that the surface normal coincides with the z-direction like in fig. 5.
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8 Evaluation of the measured curve

Since the measured curve consists of several parts, these must first be added together and
normalized one on the other so that a continuous curve forms. The data has to be normalized
in such a way, that the reflectivity at the critical angle - clearly visible in the curve - is unity.
Theoretically one expects a constant reflectivity of 1 for angles of incidence below the critical
angle. In practice, for small angles of incidence only a part of the incoming wave hits the
sample - the so called "‘footprint"’ of the beam is larger than the sample. With increasing
angle of incidence, a larger and larger fraction of the total beam falls on the sample, until
finaly the entire beam falls on the sample and is reflected. Therefore one observes a sinusoidal
rise of the measured reflectivity for angles below the critical angle (see fig. 12).
In order to correct this behavior caused by the experimental setup, one can calculate either
this footprint effect accurately or simply set the reflectivity below the critical angle to the
constant value 1. The ladder is sufficient for our purpose.
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Figure 12: Reflectivity of a 20Ml leadstearate-film: measured (black) und corrected (blue)

8.1 Determination of layer thicknesses

By meassureing the positions of the maxima on the refl. curve and the knowledge of equation
24 it is easy to determine the thicknesses of a doublelayer of stearate and also of the thickness
of the hole layer when it is suficient large (approx. more than 6ML thick). When the peaks
are very broad, it might be better to use the positions of the minima instead of the maxima,
because they can be determined more accurate. In this case first calculate the equation for
the positions of the minima (analogue to equation 24).

In addition to this, the position of the critical angles (if there is a substrate and a layer on top,
ther might be one critical angle for the layer and one for the substrate) can be determined
directly from the reflectivity curve. This values are related to the electron densities of your
sample, so you can calculate the densities of substrate and layer.
For further details and examples of this analysis from thin layers and multilayers see [7],
Chapter 8 (attached to this manual).
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8.2 Simulation of the measured curve

The measured reflectivity should be simulated with the module "IMD" of the program "XOP"
[1]. The program computes the reflectivity of an arbitrary layered system with Parratt’s
formalism described above .
For the simulation of the curves, first the data of the box model of the "ideal" structure must
be feed into the program. Through "Add Multilayer" a periodic structure can be entered into
the program. In the example from above, a doublelayer consists of five individual boxes. 1

For each of these boxes either a material from a database implemented in the program can be
selected or it’s possible to enter the structure over the button "‘Density and Composition"’ by
hand according to the chemical composition. The latter is recommended here. The density
of the material is typically of the order 2,2g/cm3 and is available later as a fit parameter. In
addition, the thickness and the roughness can be entered here for each box. Illustration 13(a)
shows the interface after input of a 20ML leadstearate film (10 repetitions à 5 boxes, here only
roughly estimated input values).

(a) Input of the 20ML model (b) Input of the angular range

Figure 13: Program-interface

Under "Dependent variable" the quantity which should be computed has to be indicated, in
our case the reflectivity. Under "Independent Var." the wavelength must be entered (Cu−Kα)
as well as the angular range for which the curve should be computed, e.g. 400 values between
0 and 4° with grazing incidence. Here also the instrumental resolution can be considered (fig.
13(b)).
Through the tab "Calculate - > Specular..." the reflectivity curve of the model can be com-
puted (- > fig. 14).

1A three-box modell where you combine the CH3 Group with the long tail might be sufficient or our purpose
and is much easier to handel, because the number of fit-parameters is reduced. We recommend that you use
such a three-box model.
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Figure 14: Simulated reflectivity curve of the above model

In order to import the data into the program, these must be present in a ASCII file (ending
.dat) with two or three columns - 1.column: αi or Qz, 2.column: R (normalized on 1), option-
ally 3. column: σr. In order to reduce calculation time, it’s possible to shrink the data set
with possibly far over 1000 measured points something, for example by skipping every second
point. It is also good to make sure that the used data are still useful at all; especially for high
angles the counting rate decreases strongly. The import of the data can be done over "File -
> open Meassured...".

Under the point "coupled parameter" in the IMD window, parameters can be linked with one
another. For example, it is reasonable that the two CH3-boxes or the tails in our example have
got the same density, thickness etc.. In order to fit the data, under "‘fit parameters"’ a large
number of different fit-parameters can be selected. Initial values and upper/ lower constraints
can be indicated in each case. The parameter Rscale can be carried within the fitting, but
however should lie near unity in the end. To fit the data, it’s not a good idea to fit all possible
parameters at once. It’s better to do it one after the other, for example starting with the layer
thicknesses, then perhaps the densities etc.. Unfortunately the program does not take over
the final values after the fit as new initial value. This has to be done by hand. In addition one
should not trust the program blindly, but always check whether the respective parameter value
is still meaningful at all. With a system with so many parameters the algorithm easily runs
into a local minimum an stucks. The fit procedure is quite complex and lengthy therefore
with such a system. The fit-algorithm can be adjusted under "curve-fit of parameter" to
logarithmic fit (without priority, otherwise one gets error messages).
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