8 Determination of Layer Thicknesses of Single
Layers and Multilayers

The measurement of layer thickness is a basic problem, and can be solved
both by x-ray reflection and x-ray diffraction (see [121] for a review). In both
methods, the thickness of a thin layer can be determined from the angular
positions of the subsidiary maxima on the reflection (or diffraction) curves.

In a reflectivity curve, these maxima are caused by the interference of
the waves reflected from the upper and lower interfaces of the layers. This
phenomenon is equivalent to the interference fringes that can be observed
with visible light, known as Pohls interference pattern [128]. The visibility
of this interference effect depends substantially on the reflectivities of both
boundaries, i.e., on the differences in the x-ray refraction indices above and
below the boundaries and on the interface roughnesses. In the x-ray region,
the latter factor is especially important since, as we show later, even a very
fine roughness on the nanometer scale gives rise to a considerable decrease in
interface reflectivity.

The range of the layer thicknesses that can be measured by x-ray reflec-
tometry depends on the intensity and divergence of the primary beam, on the
angular resolution, and on the total angular range of the goniometer used, as
well as on the wavelength A (see Chap. 2).

As we show later, in the case of a single layer of the thickness T, the
distance between the adjacent interference maxima is given by

A

where G is a geometry factor, which is unity for x-ray reflectivity. Therefore,
the primary-beam divergence and/or the angular resolution of the diffrac-
tometer determines the wupper limit of the measurable thickness T'. If, for
instance, the divergence of the primary beam is 0.01° and A = 0.15405 nm
(CuKa; line), the maximum measurable layer thickness is smaller than about
0.43 pum. The lower limit for thickness analysis is given by the accessible an-
gular range, i.e., in fact, by the maximum incidence angle a; that yields a
measurable reflectivity. Therefore, the minimum layer thickness which can be
determined, depends on how many decades of intensity are accessible by the
experiment. For instance, the determination of a layer thickness of 1.5 nm
requires measurements up to o; = 3° at least.

(8.1)
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The subsidiary maxima on the diffraction curve of a layered sample can
be explained as a result of interference of the beam diffracted by the layer (or
layers) with the beam diffracted by the substrate. The distance of the adja-
cent maxima depends on the layer thickness according to a formula similar to
Eq. (8.1), where the value of the geometrical factor G can differ from unity
depending on the diffraction asymmetry. The scattering contrast of the inter-
ference maxima depends mainly on the difference between the polarizability
coefficients xp of the layer and the substrate and on the lattice mismatch
between layer and substrate. For the latter case the thickness determination
is not straightforward and requires computer simulation.

In this chapter we will describe the possibilities for determining the layer
thickness in single-layer and multilayer structures by x-ray reflectometry and
diffraction measurements. On the basis of the general theory formulated in
Sect. 6.5, we will demonstrate the dependence of the positions of the intensity
maxima on the reflection (diffraction) curves on the layer thicknesses and we
will discuss the influence of the inhomogeneities of the layer thickness on
these curves.

8.1 X-Ray Reflection by Single Layers

From general dynamical formulae (6.14), (6.39) we can derive the following
expression for the reflectivity of a single layer deposited on a semi-infinite
substrate:
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where r1 o are the Fresnel reflectivity coefficients of the free surface and the
substrate interface, respectively, kg, is the vertical component of the wave
vector of the beam transmitted through the layer, and 7" is the layer thick-
ness. From this formula it follows that in an angle-dispersive experiment the
intensity maxima appear whenever exp(—2iko.T) = 1, this means at angle
positions a;,,,. This condition can be expressed by

2T'\/sin? @y, — sin? ae = m\, (8.3)

where m is an integer, sin a. = \/2(1 — n) and a is the critical angle of total
external reflection of the layer and n is the layer refractive index. Eq. (8.3) is
analogous to the Bragg equation but modified by the influence of refraction.
The appearing thickness fringes are called Kiessig fringes, in honor of their
discoverer [193].

Since, in most cases, the incidence angle «; is sufficiently small, Eq. (8.3)
has the following approximative form:

A\ 2
ol —a2=m? <ﬁ> . (8.4)
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This relation shows a simple method to determine the layer thickness
from the measured reflectivity curve. One plots the squares of the angular
positions of the intensity maxima versus the squares of the Kiessig fringe
order. In the range of validity of Eq. (8.4) it gives a straight line with the
layer thickness T' as parameter. From the intersection point of this straight
line with the ordinate one obtains the critical angle a. of the layer material,
and, consequently its refractive index.
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Fig. 8.1. X-ray reflectivity curve of BN coated onto silicon substrate recorded as
a function of the detector angle 2a;. a, is the critical angle of the layer; a., that
of the substrate. The numbers denote the fringe order m. The inset shows the plot
a? versus m?, which gives a layer thickness of T = 95 + 1 nm.

Figure 8.1 shows a reflectivity curve of a BN layer deposited on a silicon
substrate. It was measured by means of a powder x-ray diffractometer intro-
duced in Chapter 2.4 using A = 0.154 nm. The reflected intensity is recorded
over six orders of magnitude. This corresponds to 2a; < 6.0°.

For intensity reasons and to improve the angular resolution, the low an-
gle region between 0 < 2a; < 2a. was measured with the highest angular
resolution possible, what is determined by a step width of da; = 0.001° and
a width of the incident beam of 0.05 mm. A counting time of 2 seconds per
angular step was sufficient for good counting statistics. For larger «; the slit
width and the counting time were increased to 0.5 mm and 30 to 60 seconds,
respectively. As is visible in Fig. 8.1 the intensity increases slightly for a; < a.
and drops very rapidly if a; exceeds a.. The first dependence is governed by
the illumination correction (see later).
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Beyond a, the reflected intensity is proportional to «; 4 as follows from
the kinematical formula (5.17). This drop is modulated by the interference
of the x-ray beam reflected at the upper and lower boundaries of the layer.
Furthermore, there are two different frequencies of oscillations. The high fre-
quency is a measure of the thickness of the sputtered BN layer, and the low
frequency is that of the native SiO5 covering the silicon substrate. The layer
thickness T' of the BN is obtained from the angular distance between the
oscillation maxima according to (8.4). This is demonstrated in the inset of
Fig. 8.1 using the third to eleventh Kiessig maximum of the reflection curve.
Its graphical evaluation gives T' = 95 + 1 nm. The extrapolation to m = 0
gives a2, ~ 107%, which represents a rough estimate of the average electron
density of the layer. a2 corresponds to the density of the silicon substrate
(see below). Extracted from the long-range beating of the reflectivity curve,
the thickness of the SiOs layer amounts to 3.4+ 0.4 nm. Note that this layer
becomes visible only if the reflectivity curve has been recorded over more
than five orders of magnitude.

Expressed in reciprocal space, Eq. (8.3) looks much simpler:

2w

AQZT ’
That means T can be measured from a difference of the scattering vectors
inside the crystal (i.e., corrected for refraction).

The accuracy of the thickness determination depends on the smallest an-
gular step da; of the goniometer and on the layer thickness T. Neglecting
refraction the accuracy can be estimated from
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(8.6)

This accuracy is of the order of 1% if the oscillation maximum measured at
a; = 1° is determined with an accuracy better than Aa; = 0.01°. Eq. (8.6)
can be expressed also in terms of the largest fringe order my, a5 that is detected
in the reflectivity curve with an accuracy of one-half of a fringe period. In
the example shown in Fig.8.1 one finds mpyax = 45 at 2a; &~ 5.0°. In this
case the layer thickness t is determined with a relative error of % ~ 2%.

The accuracy of the layer thickness can be preserved as long as a sufficient
number of fringe maxima appear within the detectable angular interval, i.e.,
if T is sufficient large. Owing to the ai_4 dependence, the reflectivity of the
silicon substrate decreases to R = 2x 10 * at 2a; =2° andto R =5x 10°°
at 2a; = 3.0°. Considering the low counting statistics at large angles, the
thickness cannot be estimated with an accuracy better than 1% in practical
cases. A dynamical range of up to ten orders of magnitude is required in order
to detect one single fringe period corresponding to the thickness of a single
atomic layer (T' &~ 0.3 nm). Such dynamical range cannot be realized under
common laboratory conditions, it requires synchrotron radiation . Nowadays,
a dynamic range of seven to eight orders of magnitude is available using
modern home laboratory equipment (see Sect.2.1).
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However, using a low-power x-ray source, a rough estimate of the layer
thickness of a very thin layer can be determined exploiting the small-angle
part of the reflectivity curve, in particular the angular position of the first
oscillation minimum [382].

The electron density of the material can be determined by measuring the
critical angle of total external reflection .. From theory (see Chap. 6) one
would expect the reflecting intensity to remain constant between 0 < a; < ae.
That is not the case in experiments: as seen in Fig. 8.1, the intensity increases
within this angular range. For a given beam width, byeam, and a very small
«;, the projection of the incoming beam onto the sample surface, Apeam,
can exceed the sample size, Asample (see Fig.8.2) . Under this condition the
recorded intensity depends on the ratio bsample/bbeam and has to be corrected
by

. Acample
I = Ieas - sin(q;) for omee <

and (8.7)
I = Ineas for Azmmele > 1

beam

The particular angle a;, where Aggmpe/Abeam = 1, depends on the sample
size and the slit width bpeq,, defining the beam in front of the sample. Both
parameters have to be defined for each sample under investigation. A correct
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Fig. 8.2. Illumination of a terminated sample area while scanning the reflectivity
at very small ;.

determination of a. is not straightforward. As long as absorption is negligible
and the sample is infinitely large, a. is that value of a; where the reflecting
intensity I, is decreased to 50% compared of the maximum intensity Ia, = 1.
In this case Imax corresponds to the incident beam intensity Iy measured at
«; = 0. For finite-sized samples and highly absorbing materials I,,,, is always
smaller than unity and «. appears at an intensity smaller than 50% (see Eq.
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(8.7)). This problem becomes significant if the electron density of the layer
is lower than that of the substrate and if the layer is thin. Then two critical
angles may appear: one belongs to the layer and a second one, at slightly
larger «;, corresponds to the substrate. This has already been illustrated in
Fig.8.1.

Generally the average electron density ge1 can be determined using the
relation

a0 = VX0, (88)

which results in

2

T
—_— AQ—Tel- (8-9)

Instead of ge; the mass density o, is often of interest. These two densities
are connected by
_ 01 A
o = N7
where 7 is the electron radius defined in Sect. 5.1, Z is the atomic number, A
is the mass number and N4 is the Avogadro constant. Figure 8.3 shows three
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Fig. 8.3. The angular range of total external reflection, recorded for three different
organic films made of from fatty acid salt molecules coated onto a silicon support by
means of the Langmuir-Blodgett technique. As can be seen here, the critical angle
of film decreases as the number of layers increases due to the increased number of
structural defects within the film.

reflectivity curves of organic films made of different numbers of monolayers
coated onto a crystalline silicon support. Besides the critical angle of silicon
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at 0.22°, there is a second a, which belongs to the organic film. This smaller
critical angle decreases with an increase in the number of monolayers, due
to the increasing number of defects within the layer. For the 20-monolayer
sample, for example, a. = 0.18° corresponds to an electron density of ge; =
4.6 x 10%® cm 3, i.e., a mass density of o, = 1.54 gcm 3. The density values
of the silicon substrate are 6.99x10%? cm~2 and 2.32 gcm ™3, respectively. A
density determination by eye is not possible if the layer density is close to that
of the substrate or if the layer is very thin. The latter reason is evident in the
bottom curve of Fig. 8.3. Here, the layer density can only be extracted using
computer simulation. In that particular example, the decreasing density of
the layer is caused by the incomplete layer coverage on the substrate which
decreases with the number of transferred layers [353].

For an approximate determination of ge, we recommend measuring the
reflectivity curve in the angle range 0 < «a; < 1.5 x a, using the smallest
possible step width of the goniometer do; and find «. at the angle position
where I(@;) = Inax/2. Using da; ~ 0.001°, the accuracy of the density
determination may be estimated as

50éi
Ao/o =2

~ 0.01 8.11
0ot (8.11)
which is sufficiently precise for many technological applications. This proce-
dure works well if the rotational axis of the sample circle is aligned exactly
at the sample surface (see Sect. 2.1).
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Fig. 8.4. Experimental and fitted x-ray reflectivity curves of a thin antimony layer
on GaAs (110) substrate. The experiment cannot be explained assuming a single-
layer model.
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The following examples will illustrate some problems one may encounter
while studying extremely thin layers. Figure 8.4 shows the reflectivity curve
of a thin antimony layer grown epitaxially on GaAs (110) . This curve was
recorded using a reflectometer with low angular resolution. It demonstrates
the limit of layer thickness estimation made by eye. The electron density
of antimony is about 15% larger than that of GaAs. Therefore the critical
angle of the layer is larger than that of the substrate and it is not visible.
At larger angles a single fringe minimum and maximum are visible above the
background, the shape of the oscillation is asymmetric. A complete fit of the
reflectivity curve which considers the experimental resolution function gives
Tsp = (4.0 £0.5) nm, an interface roughness of ¢ = 0.5 nm and a refraction
index n ~ 1 — § with ds; = 1.65 107°. The interface roughness was treated
according to Sect. 11.3. Additionally one has to consider a second layer with
slightly reduced density (§ = 1.05 107°) on the top of the antimony. Its
thickness is about T' = (2.8 £ 0.5) nm, and it corresponds to microcrystalline
aggregates caused by the transition of the two-dimensional into the three-
dimensional growing mode during preparation.
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Fig. 8.5. Experimental simulated reflectivity curves of a silicon surface measured
with the use of a home reflectometer similar to that shown in Fig. 2.1. The enhanced
dynamical range of the experiment enables us to determine a thin top layer of native
oxide. The thickness of the native oxide is 1 nm with a surface roughness of about
0.35 nm. The fit is possible only considering a gradual increase of the electron
density from oxide to the pure silicon.
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This exact data evaluation is in contrast to a rough estimate by eye.
Here one can suppose a single-layer model. Using the fringe minimum at
a; = 0.76°, one get a thickness of 7' = (9 = 1) nm, which is larger than
the sum of both layers determined above. Naturally this model does not
reproduce the observed fringe asymmetry [144].

The lower limit for the determination of a thin surface layer can be es-
timated measuring the native oxide of a silicon wafer. Figure 8.5 shows the
reflectivity curve of a clean silicon surface measured with a home reflectometer
similar to Fig. 2.1 using A = 0.154 nm. The experimental curve is quite simi-
lar to that one which can be measured with synchrotron radiation [167, 356].
Only the large dynamical range of about eight orders of magnitude makes
it possible to identify the native oxide. The measured angular position of a,
corresponds to the silicon mass density of gn = 2.32 g/cm?®. At higher «; the
intensity decrease is modulated due to the existence of a very thin surface
layer. At the angular position of the destructive interference the reflecting
intensity is about 10~7. Under circumstances of a limited dynamical range
the reflection curve would probably have been misinterpreted by a clean sur-
face only. Here one clearly can identify the existence of the native oxide. The
minimum at 2a; &~ 4.8° corresponds to a thickness of Tiop = 1.0 nm. The
full fit of the reflectivity curve supplies additional parameters, i.e., the mass
density of the top layer(o, = 1.7 g/cm®) and the interface roughnesses of
the SiOs surface and the SiO»-Si interface, which are og; = 0.15 nm and
0si0, = 0.35 nm, respectively. Furthermore the fit requires consideration of
a gradual change of the density from the top layer down to the pure sili-
con. This reflects the property of SiOs to protect the silicon against further
oxidation.

After the substrate has been characterized, the layers on top of it can be
investigated. This can be a thin organic film, as shown in Fig.8.6. The layer
consists of lipids(l-1,2-dipalmitoylphosphatidic acid — DPPA) attached to
polyelectrolyte molecules (poly-diallyldimethylammonium chloride — PDAD-
MAC). Both have been transferred onto a silicon substrate by means of the
Langmuir-Blodgett technique. The main problem here is the low density dif-
ference between the molecular sub-units. Both lipids and polyelectrolytes
consist of carbon and hydrogen atoms. The only difference is the molecular
arrangement which is laterally ordered in the case of the lipids but rather
random for the polyelectrolyte molecules. The reflectivity curve has to be
recorded over eight orders of magnitude to yield sufficient structure infor-
mation (Fig.8.6). As shown in the inset, the data evaluation does not result
in a unique electron density distribution. Assuming either a two-layer or a
four-layer model, one cannot decide whether the polyelectrolytes built the
sub-layer with larger or smaller thickness compared to the lipid layers [271].
This ambiguity is a consequence of the phase problem of crystallography.

Similar information can be obtained using the energy-dispersive set-up
(see Sect. 2.1). Instead of the angular coordinate the intensity varies as a
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Fig. 8.6. X-ray reflectivity curve of a lipid monolayer attached to a polyelectrolyte
molecule. Both are covered onto silicon support. Although the fit to the experi-
mental curve is perfect there is an ambiguity with respect to the correct electron
density distribution. This problem cannot be solved without additional structural
information. The inset displays the fitted vertical density profile, (a) two box model,
(b) four box model.

function of energy at fixed a;. Figure 8.7 shows reflectivity spectra taken
from a lipid monolayer of DPPA spread onto a water surface. The experi-
ment, has been performed onto a Langmuir through installed at the sample
position shown in Fig.2.3 at an energy-dispersive beamline. The incoming
beam is reflected first at two super-mirrors (see Fig.1.12) using an incident
angle of a; = 0.25° in each case. This provides an incidence angle of 2°
with respect to the water surface. The reflectivity spectra mainly reflect the
reflectivity of the super-mirror, which gives an almost uniform intensity up
to about 16 keV, multiplied with the incident spectrum of the storage ring.
There is a distinct difference in reflectivity between the spectra taken from
the pure water surface and from the film on water. After division of the film
spectrum by the water spectrum one can clearly identify one maximum and
one minimum between 4 < E < 13 keV. Both change as a function of the
applied lateral surface pressure w. The thickness of T" = 3.2 nm at = = 40
and 29 mN/m corresponds to a phase where the molecules stand upright with
respect to the water surface. At 7 = 11 mN/m, the minimum and maximum
shift toward higher energies. The respective thickness of 7' = 2.9 nm corre-
sponds to a phase of tilted molecules. Each spectrum was recorded for 300
seconds. This time is sufficient to observe in-situ phase transitions of various
amphiphilic molecules on the water surface as a function the applied pressure.
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Fig. 8.7. Energy-dispersive reflectivity spectra taken from a lipid monolayer onto
the water surface. The experiment is performed on a Langmuir trough when a
lateral pressure m can be applied to the molecules spread onto the water surface.
The reflectivity spectrum (see inset) mainly corresponds to that of the super-mirror
shown in Fig. 1.12. The main figure displays the normalized spectra taken at three
different values of lateral pressure. The first minimum and second maximum of the
monolayer reflectivity is visible. Their positions at 7 = 40 and 29 mN/m correspond
to a phase where the molecules stand upright with respect to the surface; 7 = 11
mN/m reflects a phase of tilted molecules.

8.2 X-Ray Reflection by Periodical Multilayers

Up to now, we have dealt with systems containing one or two layers. We
have demonstrated that the parameters of the system consisting of a single
layer on a substrate can be estimated from the measured reflectivity curve
by eye. A simple analysis of the experimental reflectivity curve is possible if
the sample consists of a periodical stack of layers (a periodical multilayer).

The x-ray reflectivity of a periodical multilayer can be calculated using
the kinematical theory, or, more exactly, using Eq.6.37 in the dynamical
theory presented in Chap. 6. In many cases, the single-reflection approach
(SRA) is quite sufficient. In this approach we neglect multiple reflections
from different interfaces within the multilayer, and for the reflectivities of
the interfaces we use the exact dynamical expressions (Fresnel coefficients —
see Eq. (6.14)). In the following, we analyze the SRA formula in order to
discuss some characteristic features of the reflectivity curve of a periodical
multilayer.
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Let us assume a multilayer being created by IV periods, each consisting
of a layer A with a thickness T4 and the refraction index ng = 1 — 4 and
the layer B (T, ng = 1 — ép); the multilayer period is D = T4 + Ts. We
denote the appropriate phase factors of layers A and B by

Pg=e ¥ Ts G = A B,

where k2 is the z-component of the wave vector of the transmitted wave in
the layer of type S. For the Fresnel reflection coefficients of the A-B and B-A
interfaces, the relation

BA = —TAB
holds, i.e., the amplitude of the reflection originating from the interface A-
B is opposite that of the interface B-A. Using the matrix expression (6.37)

and neglecting all the terms containing the second and higher powers of the
Fresnel reflectivities, the reflectivity of the periodical multilayer is

R = |roa +rap [0% — %0 + G4 D%P% — -
(8.12)
2
4 (PLPR)N TP ] + rs(548%)N|,
where ro4 and rpg are the Fresnel reflection coefficients of the free sample
surface (interface between the vacuum and layer A) and the substrate sur-

face (interface between layer B and the substrate). The sum (in the square
brackets) can be evaluated, and we obtain

_ rap®L @y (94 —1)(P19%)V 1 +PE 1
R = |roa + (ad5)°—1 +

(8.13)
+I“BS(¢?4¢QB)N|2 .

Using the SRA it is straightforward to derive parameters which characterize
the multilayer structure. Several of these parameters can simply be extracted
from the experimental reflection curves and can be used as an input for the
fitting of the experimental reflection curves by means of full dynamical theory
according to Eq. (6.37).

First, let us consider the second term on the right-hand side of formula
(8.13). A maximum of this term occurs if

(@aPB)* =1,
i.e., for
EAT, + kBTp = mm,

where m is an arbitrary integer. Now we introduce the averaged z-component
of the wave vector:

EATA + EBTR
k)=-2-AT"% "B
(k) =
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making an angle (a;) with the internal surface normal. The condition for a
reflectivity maximum is
2D(n) sin{a;) = mA, (8.14)

where (n) is the average refractive index of the multilayer or, using the angle
of incidence,

2D /sin? a; — sin®(a.) = mA. (8.15)

This formula is equivalent to Eq. (8.3) for a single layer; but in (8.15) the
critical angle of total external reflection {(«.) depends on the refraction index
averaged over the multilayer period.

As in the case of a single layer, the modified Bragg law can be simplified
if the angles are sufficiently small:

2
iy, — (ae)? = m? <%> : (8.16)
Formulas (8.14) and (8.15) represent the modified Bragg law; and, conse-
quently, optical reflection from a periodical multilayer can be interpreted as
a diffraction from a one-dimensional crystal. The Bragg equation (8.15) is
corrected by the refraction of x-rays in an averaged medium that replaces
the actual multilayer structure. The reflectivity maxima can be considered
as satellite maxima close to the reciprocal lattice point 000.

If one neglects the refraction, the distance of the satellite maxima can be

approximated to
A
2D’
which similar to (8.1).

The intensity of the satellite maxima are influenced by the thicknesses
T4 and T of the layers in the period. The envelope curve of these maxima
is described by the structure factor of the one-dimensional crystal, i.e., the
multilayer period that, in the case of reflection, has the form

Ao ~

0

Foerioa(G) = /D dzyo(z)e™'9% = é(XOB —Xoa) (e79T —1),  (8.17)

where G = %Tm is the value of @), in the m-th satellite. Like the diffraction
case already explained in Chapter 5, the m-th satellite peak vanishes, if the

layer thicknesses T4, g obey the following relation:

T
m=p (ﬁ +1>, (8.18)

where p is an integer. For instance, every fourth satellite maximum vanishes
if T4/Tp = 3.
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Now, let us investigate the first and the third terms in Eq. (8.13). These
terms provide a maximum of the reflectivity if (#4®5)? = 1;i.e., a maximum
occurs for the angles (a;) given by the relation

2N D(n) sin{ay) = pA, (8.19)

where p is an integer. Neglecting refraction, the angular spacing between
these maxima,

is inversely proportional to the total thickness T = ND of the multilayer
stack. The nature of these maxima (Kiessig fringes) is obvious. They are
caused by the interference of the waves reflected at the free surface and at
the substrate interface. Simple consideration shows that N — 2 Kiessig fringes
occur between two neighboring satellite maxima. Often the Kiessig fringes are
not visible due to lateral sample inhomogeneities.
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Fig. 8.8. Reflection curve of a SiGe/Si multilayer covered by 210-A-thick cap layer,
CuKa radiation. The satellite maxima are denoted by wvertical arrows, the maxima
stemming form the capping layer are denoted by vertical dotted lines. In the inset,
the Kiessig fringes corresponding to the total thickness of the multilayer are denoted
by arrows.

As an example, we show the measured reflection curve of a SiGe/Si mul-
tilayer (Fig.8.8) covered by a Si capping layer with thickness T¢. On the
experimental curve, three types of maxima can be resolved:
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1. Satellite maxima (indicated by vertical arrows in the main part of Fig. 8.8,
whose angular spacing depends on the multilayer thickness D according
to (8.15).

2. Kiessig fringes (indicated by the vertical arrows in the inset). Their period
depends on the total multilayer thickness 7' = ND + T¢ according to
(8.19).

3. Maxima indicated by vertically dotted lines correspond to the thickness
T¢ of the capping layer.

Knowing the positions of the maxima of these types, we can estimate the
corresponding thicknesses using the modified Bragg law in Egs. (8.15) and
(8.19).

Similar to the treatment shown in Fig. 8.1, we have plotted the square of
the angular positions of the respective maxima versus the m? and obtained
the thicknesses D = (20.5 £0.3) nm, T' = ND + T¢c = (232 £ 5) nm, and
Te = (21 £2) nm.

These values can serve as starting estimates for the numerical fitting of
the whole measured curve using the dynamical theory presented in Sect.
6.4. The result of the fit procedure also is shown in Fig. 8.8. In order to
obtain a good correspondence between the measured and calculated curves,
we had to assume an oxide layer on top of the multilayer stack (having the
thickness T,;). From the fit we obtained the thicknesses of the individual
layers as well as the average root mean square roughness ¢ of their interfaces.
The fitting procedure was almost insensitive to the Ge concentration z in
the SiGe layers. The fit yielded the following values: T,, = (3 £ 1) nm,
Te = (21+£0.5) nm, D = (20.6+£0.2) nm, T4y /T = 7.0+£0.2, z = 0.35+0.15,
and o = (0.7£0.1) nm. The interface roughnesses were considered using the
formalism presented in Sect. 11.2.

We can see that the estimates of the layer thicknesses from the positions of
the reflectivity maxima nearly coincide with the more reliable values obtained
by the numerical fit to the whole curve. The thickness of the additional oxide
layer, however, could be estimated with an relative error of only about 30%,
because no respective intensity maxima could be identified within the angular
range of the measurement.

Figure 8.9 displays the reflectivity curve of a vanadium/mica multi-
layer sputtered onto a sapphire substrate measured at a wavelength of
A = 0.139 nm. Due to the huge difference of the electron densities be-
tween both constituents the reflectivity at the first-order Bragg peak is close
to unity. Thus the multilayer can be used as broad band monochromator
for synchrotron radiation use. The accepted band pass depends on the peak
width, i.e., the number of coated double layers. In the present case there
are 40 periods, which can be verified by the 38 Kiessig oscillations measured
between two neighboring Bragg peaks (see inset of Fig. 8.9). The multilayer
period amounts to 3.5 nm. The reflectivity curve could be recorded over nine
orders of magnitude. The 7"-order Bragg peak appears at a; ~ 9°. Using
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Fig. 8.9. Reflectivity curve of a V/Al;O3 multilayer film coated on mica. The
experiment has been performed at A = 0.139 nm using synchrotron radiation. The
reflectivity could be recorded over nine orders of magnitude. The inset shows the
angular range between the 1°- and 2"d-order Bragg peak [247].

Eq. (8.6) this corresponds to a relative error of about 2%. The thicknesses of
the vanadium and mica layers have been determined by curve simulation and
amount to 1.61 nm and 1.87 nm, respectively. The interface roughnesses were
determined to be 0.24 nm and 0.18 nm. The substrate roughness amounts to
0.17 nm.

The following example shows a typical reflectivity curve of an organic
film. It consists of 28 cadmium—behenate monolayers transferred onto silicon
support by means of the Langmuir-Blodgett technique. The behenic acid
molecules are amphiphilic in nature. They consist of a hydrophilic COO~
head and a (C'Hz),,C H3 tail. One Cd** ion is attached to two molecular head
groups. This is the reason that a single period of the multilayer always consists
of two monolayers of upright standing molecules where the head groups are
coupled via the C'd*t ion. Figure 8.10 shows the respective reflectivity curve
measured by a powder diffractometer and CuK «a radiation. There are two
types of periodic maxima: the main satellites measure the period thickness.
Due to the large resonant diffuse scattering (see Chap.11) which appears in
addition to the coherent scattering, these small-angle Bragg peaks are visible
over a large angular range. In the present case they appear up to the 14'h-
order. The multilayer period could be determined as D = 6.020 £ 0.006 nm.
The inset of the figure shows the evaluated electron density profile. The pec-
ularity of the multilayer consists in the large density difference between the
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Fig. 8.10. Reflection curve of a 29-monolayer Cd-behenate film deposited on sil-
icon support, measured with CuKea radiation. There are two distinguished series
of satellite maxima: the main satellite maxima, measuring the multilayer spac-
ing which consists of two monolayers with opposite molecular orientation, and the
Kiessig fringes, measuring the total thickness of the film. Note the large difference
in intensity of Kiessig peak maxima left and right with respect to the first satel-
lite maximum which is created by the odd number of monolayers within the film.
Curve simulation reveals that there is a fluctuation in the density of the individual
sublayers.

chains and the head groups. The head groups are about 0.2 nm thick, but
they have a density which is twice as large as that of the silicon substrate. On
the other hand, the hydrocarbonic chains have a density of less than one-half
of that of the silicon.

Kiessig maxima are clearly visible between the main satellites. Their num-
ber is N = 12; i.e., the total thickness should correspond to 14 double layers.
The evaluation of the angular spacing between the Kiessig maxima results in
a thickness of 7' = 90.15 + 0.35 nm which corresponds to 15 double layers.
This discrepancy has two causes. Due to the hydrophilic nature of the sili-
con surface the molecules of the first monolayer are deposited with the head
straight down to the substrate. Therefore, this layer is not a part of a double
layer and the film consists of 29 monolayers. This non-centrosymmetry be-
comes visible as the strong asymmetry in the Kiessig intensities on left and
right with respect to the first main satellite [283]. A second reason for the
larger total thickness is the molecular pile-up effect; a few molecules leave the
molecular layers and jump on top of the film, creating islands. Because this
process is already associated with a very small activation energy at room
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temperature, a sufficient number of molecules alter their vertical positions
within the multilayer film, increasing the total film thickness as a function of
time [108].

Finally one can determine the average density of the organic film. As in
Fig. 8.3, the critical angle of the films is smaller than that of the silicon
substrate. From (a. aim) = 0.175°, one obtains an average density of om =
1.5 gem 2. Note there are Kiessig maxima in the angular range between the
critical angles of film and substrate. This effect is similar to that already
shown in Fig. 8.3. Figure 8.11 shows a similar organic multilayer, a cadmium
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Fig. 8.11. Energy-dispersive reflection curves of a cadmium-behenate multilayer
film measured at different incidence angles. The counting time per spectrum was
120 seconds each. The number of Bragg peaks increases with increasing a;. Due to
the limited detector resolution the Kiessig fringes disappear at large «;.

behenate multilayer film covering a silicon substrate. Here, the experiment
has been performed at the energy-dispersive beamline at BESSY II. As intro-
duced in Sec. 3.2, the accessible range of the reflectivity curve depends on the
incidence angle. For a; = 0.5°, the range between the first and second-order
Bragg peak is probed. Several Kiessig fringes and the second-order Bragg
peak are visible. The first-order Bragg peak is attenuated due to the large
absorber thickness used to protect the detector. More Bragg peaks become
visible, increasing the incidence angle. Eight Bragg peaks appear for o; = 4°,
but no Kiessig fringes. This is due to the fact that the peak width now is
determined by the limited detector resolution. Due to the different absorber
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thicknesses used, the onset of the reflectivity differs between the spectra mea-
sured at different «;.

The layer thickness and total thickness can be determined from the peak
distance at the energy scale. In energy-dispersive reflectometry the Kiessig
peak maxima and Bragg peaks appear at different energies, changing «; due
to the relation g, E. Rewriting Eq. (8.3) in terms of energy, the energy spacing
AEFE between two neighboring intensity maxima decreases for increasing «;.
The layer thickness 7" follows from

he _ 6.2
2Tsina;  Tay;’
where h and ¢ are the Planck constant and the velocity of light, respectively.
Refraction is neglected in Eq. (8.20) and sina &~ a. The accuracy of the
thickness determination depends on the energy resolution of the detector
AE:

AT AE

T E°
For a germanium or Si:Li detector AE is about 180 eV. This results in a
relative accuracy of % ~ 1% for peaks measured at E = 10 keV. The upper
limit for evaluating a layer thickness depends on the minimum separation
which can be resolved between two peaks. Assuming AE = 0.5 keV and
a; = 0.25°, the limit amounts to about 300 nm. The limited energy band pass
of the experiment determines the lower limit of the thickness determination.
Using a; max = 4° and a band pass of about 15 keV, the lower limit is on
the order of 1 nm. This limit has been determined by measuring the thermal
expansion coefficient of polymer films with thicknesses of about 100 nm [48].

The evaluation of spectra shown in Fig. 8.11 gives a multilayer period of
Dy =5.65+0.05 nm and a total thickness of T}, = 56 nm, which verifies
preparation conditions. The comparison of the various spectra manifests the
validity of Eq. (8.20). As seen, the number of the Bragg peaks is doubled,
increasing «; by a factor of two.

In comparison with the angle-dispersive set-up, the accuracy of the abso-
lute thickness determination is lower. Nevertheless each spectrum shown in
Fig. 8.11 was collected in 120 seconds which is a small fraction of the time
necessary for recording the analogous angle-dispersive curves.

0E =

(8.20)

(8.21)

8.3 Coplanar X-Ray Diffraction by Single Layers

X-ray reflection is sensitive to the gradient of the electron density normal to
the air-sample interface; that means the layer thickness can be determined
independent of crystal perfection. In contrast to this, coplanar x-ray diffrac-
tion measures the lattice spacing of the layer as well, presuming crystalline
perfection. Therefore, it is advantageous to combine reflection and diffraction
measurements in order to obtain complete information on the investigated



