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2 Experiencing the quantum computers

The tutorial will be continuously improved for better readability. Do check out for the
updated version at:

https://www.tp.nt.uni-siegen.de/+nguyen/index.html
Version October 8, 2024

This labcourse introduces students to the use of quantum computers. The labcourse con-
sists of two days working in the computer room with access to publicly available simulated
and real quantum computers. Students will learn how to write code and run it in a quantum
computers. As an examples, we implement the Bell experiment, the Deutsch-Jozsa algo-
rithm, and the Grover algorithm.

• Day 1: Getting used to coding in a quantum computer (basic coding, tomography)
• Day 2: Implementation of the Deutsch-Jozsa algorithm and the Grover algorithm

https://www.tp.nt.uni-siegen.de/+nguyen/index.html


Day 1: Getting used to coding in a quantum computer

Background requirement
Please read the materials provided in Section 1. Be sure that you are able to answer the
following questions (or completed the indicated task) before going into the lab.

(Q1) What is a qubit?
(Q2) What is a pure state and a mixed state?
(Q3) What does one mean by state tomography?
(Q4) What is the computational basis representation?
(Q5) What are the X,Y,Z, Hadamard, gates?
(Q6) What is the CNOT gate?
(Q7) What happens when a qubit is measured?
(Q8) What is a quantum circuit?
(Q9) How does one carry out the tomography of a state?

(Q10) What is a Bell state?
(Q11) What is the setup of the Bell experiment with the singlet Bell state?

1. Quantum computer: qubits, gates and circuits

There are already quite several good introductions to the topics. Please read the following
introductory articles:

• N. David Mermin, ‘From Cbits to Qbits: Teaching computer scientists quantum mechan-
ics,’ Am. J. Phys.71, 23 (2003) [arXiv:quant-ph/0207118].
• S. M. Barnett, ‘Quantum information,’ Oxford University Press, Chap. 2, pp. 31-49.

2. The Qiskit interface

Qiskit can serve as a very simple frontend interface to a quantum computer backend
(or a simulated one). That means, among other features, qiskit allows one to build up a
quantum circuit and send it to a quantum computer (or a simulated one) for execution.

2.1. Install qiskit. It is also recommended that students try to install qiskit locally
in their computer for further learning. The installation in linux is straightforward following
the instructions from qiskit at:

https://qiskit.org/documentation/stable/0.24/install.html

The basic steps are:
(1) Install anacoda
(2) Create and activate an environment in anacoda, here named TQO2023.
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(3) Install qiskit
(4) Install jupyter notebook

For windows users, follow the guidelines here:

https://techglimpse.com/install-qiskit-on-windows-10-ibmq/

2.2. Startup. In the experiment, you are provided with a computer, where qiskit has
been installed. After starting the system, open your terminal. Go to the TQO folder and make
a new folder with your group name and go inside the folder.

1 cd TQO

2 mkdir GROUPNAME

3 cd GROUPNAME

Thereafter activate the anacoda enviroment TQO2023 where qiskit was installed. Then
open the jupyter notebook.

1 conda activate TQO2023

2 jupyter notebook &

The webbrowser Firefox will be opened, redirecting you to the jupyter notebook. Choose
new notebook from the drop menu.

2.3. Building a circuit with qiskit. The best way to get used to qiskit is to follow
a simple example. The following simple example is adapted from the tutorial provided by
qiskit. Type the example into the jupyter notebook. Save it as Example.ipynb.

1 #BUILDING A CIRCUIT--------------------------------

2 #Importing circuit builder

3 from qiskit import QuantumCircuit

4

5 #Create a Quantum Circuit acting on 2 qubits and 2 cbits

6 qc = QuantumCircuit(2, 2);

7

8 #Add a H gate on qubit 0

9 qc.h(0);

10

11 #Add a CNOT gate on control qubit 0 and target qubit 1

12 qc.cx(0, 1);

13

14 #Measure the qbits and write to the classical bits

15 qc.measure([0,1], [0,1]);

16

17 # Draw the circuit

18 qc.draw(’mpl’);

One should get:

https://techglimpse.com/install-qiskit-on-windows-10-ibmq/
https://qiskit.org/documentation/tutorials/circuits/1_getting_started_with_qiskit.html
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2.4. Running the circuit in a simulator. To run the circuit, one first has to setup the
backend. Here we learn to setup a simulator. Setting up the backend to be a real quantum
computer will be discussed later. Type the following codes into the next scope

1 #SETUP THE BACKEND AND TRANSLATOR----------------

2 #Importing the simulator

3 from qiskit.providers.aer import QasmSimulator

4 # Use Aer’s qasm_simulator

5 backend = QasmSimulator()

6

7 #Importing translator

8 from qiskit import transpile

9 #Compile the circuit so that the backend understands

10 qc_bin = transpile(qc, backend=backend)

11

12 #EXECUTION--------------------------------------

13 # Execute the circuit on the qasm simulator

14 qc_job = backend.run(qc_bin, shots=20000)

The last command typically sends the job to the backend. In general, the backend can be
busy (which is not the case here for the local simulator), then the job can be put in a queue
waiting for execution. The following commands query for the status of the job.

1 from qiskit.providers.jobstatus import JobStatus

2 print(qc_job.status())

2.5. Obtain the results. Once the job is done, one can retrieve the results and proceed to
analysis.

1 # Grab results from the job

2 qc_result = qc_job.result()

3 #LOADING AND VISUALISE THE RESULTS-------------

4 # Returns counts

5 qc_counts = qc_result.get_counts(qc_bin)

6 print("\nTotal counts are:",qc_counts)

2.6. Changing the backend to mimic an IBMQ. Unfortunately this year IBM has limited
the access to their quantum computers. It is hard to queue our small academical job on their
computers. Fortunately, there are options to simulate the real backends with qiskit.

We can take a backend, for example:
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1 from qiskit.providers.fake_provider import FakeLima

2 backend = FakeLima();

In many aspects, the fake backend mimics the real backend at IBMQ well. This also include
all the possible sources of noise in the operation of the device.

Next we need to compile the circuit constructed before to the machine code that the
backend understands:

1 from qiskit import transpile

2 qc_bin = transpile(qc, backend=backend)

And run the code as usual:

1 from qiskit.providers.jobstatus import JobStatus

2 qc_job = backend.run(qc_bin,shots=20000)

3 print(qc_job.status())

Tip: Save all the relevant codes to the Example.ipynb so that later you can reuse dif-
ferent paragraphs.

Experiment 1: The Hadamard gate. The following circuits prepare a qubit (initiated as
|0〉), acting a Hadamard gate before making a measurements in three different direction, x, y
and z.

Notice that Rα(ϕ) denote that rotation operator by angle ϕ around axis α = x, y, z. Explain
why the circuits implement the designed experiments. Write the codes to construct the cir-
cuits. Run each of the circuits 5 times in a simulated quantum computer (say lima). Note
the counts to your report. Remark whether the results are reasonable.

Experiment 2: The Bell state and Bell experiment. Show that the following circuit pre-
pare the singlet Bell state

The following 4 circuits perform different measurement settings on the prepared Bell’s state
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Explain which measurements haven been simulated in terms of spin measurement directions
two spin-1/2 particles. Relate the setting to the CHSH inequality.

Write the code that constructs the circuits. Run the code 5 times in a simulated quantum
computer. Note the counts to your report. From the data, compute the value of the CHSH
operator. Does it violate the CHSH inequality?

3. State tomography

In an actual quantum computer, there are various sources of noise. The output of a circuit
may not be exactly the theoretically expected one. We therefore want to characterise the
output of the circuit by means of state tomography. In this section, we learn how to carry out
state tomography.

Let us consider a two-qubit state ρ, which can always be written as

ρ =
1

4

3∑
i,j=0

Θijσi ⊗ σj , (1)

where σi and σj are the Pauli matrices. So, in order to construct the density operator ρ, one
only has to measure the mean values

Θij = tr[ρ(σi ⊗ σj)]. (2)

We say we have a tomography of the state.
First we have to load the libraries like in Experiment 1. Then a library for state tomogra-

phy:

1 # Tomography functions

2 from qiskit_experiments.library import StateTomography

Build a circuit as usual.
1 # Create the actual circuit

2 from qiskit import QuantumCircuit

3 qc = QuantumCircuit(2)

4 qc.h(0)

5 qc.cx(0,1)

We then use StateTomography to generate the list of circuits for state tomography

1 # Generate the state tomography circuits.

2 qc_tm = StateTomography(qc);

3 for c in qc_tm.circuits():

4 print(c)

Look at and explain the outcomes.
One then only need to run the circuit in an appropriate backend:

1 # Execute

2 backend = FakeLima();

3 qc_tm_bin= transpile(qc_tm.circuits(),backend=backend)

4 qc_job = backend.run(qc_tm_bin, shots=20000)

5 qc_job.result().get_counts()
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Using the results, one can compute Θij and obtain an estimate ρ̂ for the original state.
To access the quality of the reconstructed state ρ̂ one can compute the so-called fidelity.

If the target state ρ is pure, |ψ〉〈ψ|, the fidelity is given by

F (ρ̂, |ψ〉) = 〈ψ| ρ̂|ψ〉. (3)

In all of our experiments, the target states are pure and this simple formula is valid.

Experiment 3: Tomography of the Bell state. Recall that the following circuit prepare
the singlet Bell state

Write the code to prepare the Bell state using the above circuit. Construct the tomography
circuit set of the state. Reconstruct your state and compare it with the theoretical one using
the fidelity as the quality measure. Repeat the experiments 10 times to have the statistics.

Experiment 4: Tomography of a general state. Consider the following circuit:

Write the code to implement the circuit and carry the tomography of the output state. Cal-
culate the state theoretically and compare it with the experiment results using the fidelity as
the quality measure. Repeat the experiments 10 times to have the statistics.



Day 2: The Deutsch-Jozsa algorithm and the Grover algorithm

Background requirement
Please review the material in Day 1 and read the materials provided below and be sure
that you are able to answer the following questions before going into the lab. Questions
marked with ∗ are optional.

(Q12) What is the Deutsch-Jozsa problem?
(Q13) Explain the quantum algorithm for the Deutsch-Jozsa problem.

(Q14)∗ Prove equation (5) for Deutsch-Jozsa problem with n = 1.
(Q15) What is the problem targeted by the Grover algorithm?
(Q16) Explain why a classical greedy algorithm requires N −1 calls of the function for

the unstructural search.
(Q17) Explain the implementation of the phase flip operator from the oracle.
(Q18) What is the circuit implements the quantum-OR oracle?
(Q19) What is the circuit for the Grover step?
(Q20) What is the circuit for the full Grover algorithm?

(Q21)∗ Derive the output state after t Grover steps in equation (11).

4. The Deutsch–Jozsa algorithm

We are given a hidden Boolean function f , which takes as input a string of bits, and
returns either 0 or 1, that is,

f : {0, 1}n → {0, 1} (4)

The property of the given Boolean function is that it is guaranteed to either be balanced or
constant. A constant function returns always 0 or always 1 for any input, while a balanced
function returns 0 for exactly half of all inputs and 1 for the other half. Our task is to deter-
mine whether the given function is balanced or constant.

Classically, this question can be answered by evaluate the function at least twice for the
best case, or 2n−1 + 1 for the worse case.

Quantum mechanically, this question can be answered by a single run of the (quantum)
function. The function f is modelled in quantum mechanics by an oracle Uf , which maps
Uf : |x〉|y〉 → |x〉|y ⊕ f(x)〉.

The following circuit demonstrates the quantum algorithm1:

1Figure taken from qiskit tutorial.
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When the output get x = 0, the function is constant, else it is balanced. To see that, one
only has to follow the definition of the gate and show that the end state of the x-register is
given by

1

2n

2n−1∑
y=0

2n−1∑
x=0

(−1)f(x)(−1)x·y|y〉. (5)

A constant oracle is really simple. For example, the trivial circuit (no gate) outputs always
0 regardless of the inputs on the three qubits (can you think of a circuit that always output
1?). As an example of an oracle that is balanced, we have the following circuit:

Write the full table of output in your report to verify that the oracle is indeed balanced.

Experiment 5: Implementing the Deutsch-Jozsa algorithm. In this experiment we im-
plement the Deutsch-Jozsa algorithm to determine if an oracle acting on n qubits is classical
or balanced. Write the code according to the following structure:

1 #Deutsch Jozsa algorithm:

2 def DeutschJozsaCircuit(n,oracle):

3 #n: number of qubits

4 #oracle: the oracle in the form of instruction

5 ...

6 return qc

Fill your code in. Here oracle is an ‘intruction’, which can be appended to a circuit qc by

1 qc.append(oracle,qlist) #qlist: list of qubits where oracle acts

Use the oracle and the following code to test your implementation:

1 #Functions constructing oracles:

2 def constant_oracle(n):

3 qc = QuantumCircuit(n+1, name=’oracle’)
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4 print("The oracle: \n"); print(qc);

5 return qc.to_instruction();

6

7 def balanced_oracle(n):

8 qc = QuantumCircuit(n+1, name=’oracle’)

9 for k in range(n):

10 qc.cx(k,n);

11 print("The oracle: \n"); print(qc);

12 return qc.to_instruction();

13

14 #Set number of qubits:

15 n=3;

16 #Fippling coin to choose oracle:

17 coin=randint(0,1);

18 if (coin==0):

19 oracle= constant_oracle(n);

20 else:

21 oracle= balanced_oracle(n);

22 #Construct Deutsch-Jozsa circuit:

23 qc= DeutschJozsaCircuit(n,oracle);

24 print("The Deutsch-Jozsa circuit: \n"); print(qc)

25 #Run:

26 qc_bin= transpile(qc,backend=backend);

27 qc_job = backend.run(qc_bin, shots=10000);

28 qc_result = qc_job.result();

29 print("Result counts:")

30 display(qc_job.result().get_counts());

31 if (coin==0):

32 print("Oracle was constant!");

33 else:

34 print("Oracle was balanced!");

Set the backend to a simulator for testing and then a FakeBackend of your choice. Make
a table recording the counts of 10 runs of the circuit with the FakeBackend. Compute the
probability of getting the correct output from the algorithm (with error bars).

5. The Grover algorithm

Suppose we have a function f : {0, 1}n → {0, 1}which is 0 except for a single (unknown)
value x0 ∈ {0, 1}n where f(x0) = 1. The Grover algorithm aims at finding x0 with low
number of calls to the function.

The function f is assumed to have no structure to exploit (such as continuity, mono-
tonicity, etc.) for a fast classical algorithm. In this case, a classical greedy search requires
N − 1 = 2n − 1 calls of the function (explain why!). Assuming the implementation of f in
terms of a quantum oracle [see previous section], the Grover algorithm allows for finding x0
in O(

√
N) calls of the oracle. This algorithm is implemented using the following building

blocks.
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(1) Implementation of the phase-flip operator. Recall that the oracle implementation of f is
an unitary Uf acting over n+1 qubits (including input as well as output qubits) such
that Uf (|x〉|y〉) = |x〉|y ⊕ f(x)〉. The phase-flip operator implementation for f is an
unitary operator Zf on the input qubits such that

Zf (|x〉) =

{
|x〉 if f(x) = 0
−|x〉 if f(x) = 1,

(6)

The phase-flip implementation Zf of f can be obtained from its oracle implementa-
tion Uf using the following circuit:

(2) Implementation of the ZOR. Notice that the OR fuction is a map OR : {0, 1}n → {0, 1},
which is 1 except for x = 0, where OR(0) = 0. Its phase-flip operator ZOR is thus

ZOR(|x〉) =

{
|x〉 if x = 0,
−|x〉 if x 6= 0.

(7)

Show that the following circuit implements the phase-flip operator for the OR func-
tion,

Further, one can write

ZOR = 2|0〉〈0| − I, (8)

where I is the identity operator (explain why!) Therefore

H⊗nZORH
⊗n = 2|u〉〈u| − I, (9)

where |u〉 = 1/
√
N
∑N

x=0 |x〉 (explain why!)
(3) The Grover step. The following circuit implements the Grover step:
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(4) The Grover algorithm constitutes of preparing the state |u〉 = 1/
√
N
∑N

x=0 |x〉 by
Hadamard gates over every qubits, and then iteratively applying the Grover step
for topt times, where

topt = bπ/4θcwith θ = arcsin(1/
√
N). (10)

The circuits assumes:

The output of the circuit gives x0 with high probability.

Experiment 7: Implementation of the Grover algorithm. The rough structure of the
program would be as follow:

1 #Quantum Or gate

2 def QOR(n):

3 #n: number of input qubits, output last

4 qc= QuantumCircuit(n+1);

5 ...

6 return qc.to_intruction();

7

8 #Construct the GroverStep

9 def GroverStep(n,oracle):

10 #n: number of input qubits, output last

11 qc= QuantumCircuit(n+1);

12 ...

13 return qc.to_intruction();

14

15 #Main function constructing full circuit

16 def GroverCircuit(n,oracle):

17 qc= QuantumCircuit(n+1);

18 ...

19 return qc;

20

Fill the codes that implement the obove functions in. Using the following testing oracle
1 #Oracle:

2 def ConstructSingleTargetOracle(n,target):

3 #Result in the last qubit (make sure in |->);

4 qc= QuantumCircuit(n+1,name=’q-oracle’);

5 for k in range(n):

6 if (target[k]==0):

7 qc.x(k);

8 qc.mcx(list(range(n)),n)

9

10 for k in range(n):

11 if (target[k]==0):

12 qc.x(k);

13
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14 print("Oracle ");print(qc);

15 return qc.to_instruction();

16

17 ConstructSingleTargetOracle(3,[0,0,1])

and test your code with
1 #Set number of qubits and target

2 n=4;

3 N=2**n; #dim

4 target= [0,1,0,0];

5 rtarget= target[::-1]; #reverse to meet the order of qiskit

6

7 SingleTargetOracle= ConstructSingleTargetOracle(n,rtarget)

8 qc= GroverCircuit(n,SingleTargetOracle);

9 qc_bin= transpile(qc,backend=backend);

10 qc_job = backend.run(qc_bin, shots=10000);

11 qc_result = qc_job.result()

12

13 print("Original target \n", target)

14 plot_histogram(qc_job.result().get_counts())

Run your code on a simulator and make sure that it gives correct answer. Run your
code on a FakeBackend (5 times) and give remark on the effect of noise in an actual quantum
computer on the output. Estimate the probability of the correct answer (with error bars) from
the collected data.

Let us now try to understand how the Grover algorithm works [further discussion during
the experiment]. Notice that the qubits are initiated in state |u〉. Every Grover step then
changes the state vector of the qubits, but it remains in the 2D-space of spanned by |u〉 and
|x0〉. In fact, every Grover step rotates the state vector in this 2D-space from |u〉 towards |x0〉
by an angle of 2θ = 2 arcsin(1/

√
N). The state vector after t steps can be found to be

|ψt〉 = cos[(2t+ 1)θ]|x0〉+ sin[(2t+ 1)θ]|x̄0〉, (11)

where |x̄0〉 = 1/
√
N − 1

∑
x 6=x0 |x〉.

Experiment 8: Investigation of the state vector during Grover search. Run your code
in Experiment 7 with varying different steps t (from 0 to 4topt). From the data estimate the
probability (with error bars!) of obtaining the output as |x0〉 and compare it with eq. (11).
Plot them together with the theoretical expected exact result. As usual, run the experiment
with a simulator backend for testing and then a FakeBackend of your choice (5 times) for
data collection.
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