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1 X-ray radiation

1 X-ray radiation

1.1 Discovery

In 1895 Wilhelm Conrad Réntgen investigated the characteristics of gaseous discharge tubes. He
noticed that with every gaseous discharge there were fluorescence appearances on a fluorescent
screen outside the tube. Rontgen realized that the reason for this had to be a new kind of radiation
whose existence had been undiscovered till then. He dated the day of this discovery to 08.11.1895.
In the English-speaking literature the term "X-rays", which had been suggested by the discoverer
himself, is generally accepted. In the German-speaking region the radiation is named after its
discoverer: "Rontgenstrahlung". Réntgen himself carried out the first investigations to determine
the characteristics of the new radiation and realized that it was able to pass through optically
opaque materials. The proof of the electromagnetic wave-character of the radiation, however, was

FiG. 1.1: Experimental setup according to Friedrich, Kip-
ping und v. Laue - Quelle: [Laul3]

furnished by Laue, Friedrich and Knipping only in 1912 by diffraction experiments on crystals.
FiG. 1.1 shows the historical experimental setup used by Kipping and Friedrich.
As it is described below the x-ray tube created polychromatic x-ray radiation. The outcoming
radiation was collimated by holes in two lead plates onto the crystal under investigation. The
crystal itself was mounted on a goniometer with some degrees of freedom. The photo plate was
used for detection. Two of the publishes photographs are shown in FiG. 1.2.

The publication of this work took place 1913 in the “Annalen der Physik” and already in 1914
Max von Laue received the Nobel price as initior of these investigations.

The Laue method is used still used with the help of conventional x-ray tubes for determination
of the crystal orientation (i.e. the determination of the orientation of the crystallographic base
vectors with respect to the outer coordinate system). The availability of synchrotrons as sources of
x-ray radiation (extreme high intensity, broad spectrum of frequencies, small divergence) enlarged
the perspectives of the Laue-Methode towards a time-resolved determination of the crystal struc-
ture. The basic knowledge, that is also necessary in this experiment, is also for these applications
inevitable.




1.2 Erzeugung

Fig. 4

Fi1G. 1.2: Historische Laue-Aufnahmen eines Kupfervitrolkristalls

1.2 Erzeugung
X-rays are quanta of electromagnetic fields in the high energy range; they have a wavelength

between 1 pm and 1nm. This corresponds to an energy value between 1 MeV up to 1keV.

Das elektromagnetische Spektrum
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ABB. 1.3: Elektromagnetisches Spektrum; Quelle: “Gebandigtes Licht”,
Themenheft der DPG und des BMBF, 06,/2000

In the electromagnetic spectrum (1.3) the lower energies beyond this are so-called hard ultravi-

olet rays; the energies above 100keV are called gamma rays, if the radiation is generated through
nuclear transitions.




1 X-ray radiation

X-rays have a relatively high energy compared to visible light and that is why they can easily pen-
etrate material. Furthermore, X-rays can induce materials to fluorescence and they can blacken
photographic plates. Because of these characteristics the X-ray methods found wide application
in medicine and technology.

Electromagnetic radiation is created, if charged particles are accelerated. This happens for ex-
ample in a synchrotron by deflection of the electrons in magnetic fields or by a simple deceleration
of electrons in a solid material as it is the case for the x-ray tube. F1G. 1.4 shows such an x-ray
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Fi1G. 1.4: Principal setup of a x-ray tube

tube. Free electrons are liberated at the cathode by means of glow emission und then accelerated
in a high voltage field (10kV-300kV). When these electrons hit the anode, the will be decelerated
in one or several hits with bound and free atomic electrons. The fast electrons transfer a certain
amount of momentum and kinetic energy to the atomic electrons:

1
Ekinzﬁme-ﬁ:e-U (1.1)

A certain part of this energy will be emitted as x-ray radiation. However, the biggest part of
the energy causes a heating of the anode material. Anode material as its melting temperatur is
higher than 3000° C. In order to increase the radiation intensity or just to prevent a melting of
the anode material, the anode has to be water cooled. Copper, molybden, silver or chromium are
common anode materials. Because of absorption in air yield of the x-ray Bremsstrahlung intensity
is maximal for copper radiation.

A theoretical description of this “Bremsstrahlung” is done with the help of the so called Lienard-
Wiechert potential:

[x — x|

olx,t) = //Q(X,’t)-(s(t’—t—‘x_c’(/')dx’dt (1.2)
|4

For a single electric charge this potential can be calculated analytically and one gets the following




1.2 Erzeugung

radiation fields:

R x (Rx (§-R) xv)

€ 1-p3 = ’
E(xt) = m(R—ﬂ-R)—i— PR (1.3)
B(x,t) — %xE(x,t) (1.4)

with R = x—x" =x—r(t) and 8 = v/c as the velocity of the electrons normalised to the speed of
light. In the case of Bremsstrahlung radiation the contribution § x v vanishes and the absolute
value of the corresponding Poynting-Vektor is given by:

c e v? sin? (1)

Sl=5 = =52 T3 i (1.5)

Here ¢ is the angle to the propagation direction of the electrons in the x-ray tube. The function
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FiG. 1.5: Characteristics of Bremsstrahlung radiation

(1.5) is depicted in F1G. 1.5 for three different values of 5. Furthermore a schematic drawing of
the emitted spectrum is shown. From (1.1) one can see, that there is a cutoff wavelength Apin in
the left part of the spectrum, that is related to maximum kinetic energy of the Elektrons, that are
decelerated in the anode. Photons with this wavelength are created, if the total kinetic energy of
the electrons (1.1) is used for the production of the photon. One gets:
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The spectrum of the Bremsstrahlung is covered with the so called characteristic spectrum. It
originated from accelerated electrons, that liberate atomic electrons in the anode material. What




1 X-ray radiation

remains is an excited atom, which returns to its ground state by catching an free electron and
emitting an photon. This anode material specific radiation has a limited spektral bandwidth and
so it is very bright. This part of the total radiation power is of lower interest in this experiment.
However, it might explain, why certain diffraction spots have a very high intensity.

1.3 Characterisitics

As already mentioned, Rontgen discovered that X-rays penetrates deeper into matter than light
because of its high energy. To describe the interaction between X radiation and matter adequately,
the following effects have to be examined: absorption, scattering, generation of secondary radi-
ation, pair production, ionization, luminescence as well as diffraction and refraction. Here only
the last two effects will be looked at more closely because they are essential for the understanding
of the Laue method. For questions concerning the other effects we refer to the teaching module
“X-ray optics” and to the relevant literature. [Gru94].

To observe diffraction effects, the wavelength of the radiation and the measurements of the object
on which the radiation is to be diffracted have to be of the same order of magnitude. In the range
of "visible light" we deal with wavelengths between 400 and 700nm. The typical measurements of
a diffraction lattice have to be of the same scale and thus ruled gratings typically have some 1000
lines/nm. The intervals between the lines of a diffraction lattice for the X-ray range then would
be of the same magnitude as the distance between the atoms because the wavelength is typically
1000 times smaller than in the visible optical range. A lattice of this kind cannot be artificially
produced but the atoms of a crystal form the lattice themselves. Max von Laue, W. Friedrich and
P. Knipping recognized this connection already in 1912 [2a]. In their historical experiment they
recorded the first diffraction images of crystals in the X-ray range. If a crystal (which functions
as a three-dimensional lattice here) is radiated with polychromatic radiation, this radiation will
be refracted under different angles depending on the wavelength. (This process is analogous to
the process on an optical lattice.) This can be illustrated by the help of the following model: The
X-ray field induces each electron within the crystal to oscillate. In this way every electron itself
becomes the starting point of X radiation. The electrons, however; do not oscillate automatically
in-phase. Because of their different position within the crystal they are hit by the primary radi-
ation at different points of time. There have to be special conditions for the wave trains of the
secondary radiation to superpose in constructive ways. That is why the interference conditions
are similar to the ones in the optical range. In our case, however, the interference conditions are
more complicated because of the three-dimensional lattice structure. The formation of the atoms
within the crystal and the positioning of the crystal lattice towards the primary rays are of special
importance. The Laue method makes use of this fact to determine the symmetry characteristics
of the crystals. We will have a closer look at the particular connections and the formation of
diffraction images later.

1.4 Detection

X radiation can be proved by every measurable interaction between X-rays and matter. For
example, X radiation ionizes the molecules of the air and in this way indirectly causes the reduction
of an electric field between two plates of a capacitor by penetrating the air between those plates.
This principle is also used for the Geiger counter after Geiger and Mueller. Here, however, we
have an axially symmetric positioning of the capacitor in an inhomogeneous electric field (tube




1.5 Radiation protection

filled with inert gas under low pressure). The high voltage of the capacitor accelerates every ion
which is produced through X radiation. These ions in turn produce free charge carriers through
collision ionization and in this way reduce the detection limit for the dose of radiation. By means
of such a measurement only the intensity of the X radiation can be examined, a spectral or local
resolution is not automatically possible.

The scintillation counter is based on another principle. Here the X-rays induce processes of
luminescence within a crystal (usually sodiumiodide doped with thallium). The optical photons
generated in this way hit a photocathode and release electrons in this cathode. These electrons are
strengthened through a voltage cascade ( photomultiplier). Because the strength of the voltage
impulse depends on the energy of the X-rays, not only the radiation intensity but also the spectral
distribution can be detected, if the decay time of the crystal is short enough. In the Laue method
position sensitive area detectors like the following are necessary to detect the diffracted radiation:

e A luminescent screen is exposed to the radiation. The screen transfers the radiation into the
optical frequency range, so it can be photographed. However, this method became obsolete
and is not used nowadays.

e A photoemulsion is exposed to the radtiation. Depending of the structure of the film the
processes that leads to a blackening of the film by x-rays are similar to these in the optical
range. However, the blackening curve i.e. the connection between lightening time and the
degree of blackening is different for x-rays.

e The Laue picture is enhanced by a image signal enhancer and picked up by a CCD- Kamera.
So the Laue record is immediately given as an electronic medium.

o The “Imageplate system” is comparable to the detection method by a photo emulsion. The
image plate consists of a polymer, in which x-rays can create defects. These defects are stable
under normal conditions, but show fluorescence for a characteristic wavelength. With the
help of a special scanner the diffraction pattern can be digitalised.

1.5 Radiation protection

Dealing with X-rays is very dangerous. There can be both physical and genetic (hereditary)
damages and injuries. Only severe radiation injuries can be perceived immediately by the person
affected. That is why special precautionary measures are necessary which are legally regulated in
the "Regulation about the Protection against Damages and Injuries caused by X-rays" of January
8th 1987, latest update on July 18th 2002. Because of this regulation there are special guidelines
for dealing with X-rays in working environments and supervision. The following measurements
and limits guarantee the observance of these legal regulations in our experiment: The maximal
local dosage in this experiment was 30 #5v/h. The hands will be exposed to radiation about three
to five hours if the experiment is well prepared. The limit of radiation for the hands of people
dealing with radiation because of their work is 150 mSv/year. So in our Laue experiment the
radiation is far beneath the legal limits. The other parts of the body are protected by lead so
there is no measurable radiation.

Further information is given in the standard literature.
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2 Beschreibung von Kristallen

Asindicated in the subsection 1.3, regular submicroscopic structures are necessary for the creation
of diffraction pattern with X-ray radiation. Such a regularity has to cover a wide volume area
compared to the atomics distances in order to develop strong interference phenomena. Amorphous
solid structures do not show regularity and therefore reveal if any only weak interference patterns.
On the other hand crystals exhibit even in makroscopic samples very regular structures and can
be analysed with X-ray diffraction very efficiently. The description of the different crystal systems
and the contained symmetry characteristics is the topic of this section.

2.1 Coordinate systems and lattice planes

Fia. 2.1: Crystallographic
unit cell of a crystal:
The basis vectors enti-
tles with a, b, c] or [a,
ag, as]. a and b enclos
the angle v, b and c the
angle « and ¢ and a the
angle 3. The lengths
of the basis vectors are
also called lattice para-

meters.

Regularity of a crystal means, that a certain configuration of atoms (a lattice point) in a crystal

is repeated over and over again in each of the directions in space to build up the crystal lattice.
The smallest configuration of lattice points to build up the whole crystal is called a crystallographic
unit cell (see F1G. 2.1). Within this unit cell the edges define the by the so called basis vectors of
the crystal. Now, the periodicity of the crystal demands for a reconstruction of the total crystal
by means of successive translation in the directions of the three basis vectors.
Neither in nature nor in the laboratory the shape of a macroscopic crystal will exhibit the shape
of the unit cell. The outer surfaces of crystals can be classified by certain lattice planes instead.
These cuts through the crystal, for which the condition of periodicity is given, will cross the axis
which are defined by the directions of the basis vectors in the points a,, b, und ¢, (see FiG. 2.2).
It should be mentioned here that a,, b, und ¢, need not be integer numbers. However, these three
numbers are mostly given by interger numbers.

2.2 Reciprocal lattice and Miller’s indexes

The reciprocal lattice is a mathematical construction, which is useful for indexing of lattice planes
and for further insight to the X-ray diffraction of crystals.

10



2.2 Reciprocal lattice and Miller's indexes

Fic. 2.2: Lattice plane of
a crystal: The lat-
tice plane shown in the
sketch crosses the ex-
tensions of the basis
vectors in the points
a0, by und ¢, (in units
of the basis vectors).
Equally oriented lattice
planes show a constant
ratio a,:b,:c,. R is ar-
bitrary vector guiding
from the origin to the
lattice plane and N is
the normalised vector
on the lattice plane.

Die basis vectors of reciprocal lattice are defined by the following equations:

a-a* = 27w b-b* = 27 c-¢& = 27
b-a* = 0 c-b* = 0 a-¢& = 0 (2.1)
c-a* = 0 a-b* = 0 b-¢c = 0

A solution to this linear equation system is given by the definition equations:

a* = 5—”-b><c
* QET? -
b* = @-cxa mit Vgz =a- (b xc) (2.2)
cr = i—-axb
EZ

(2.3)

Since the basis vectors of the real lattice are linear independent the basis vectors of the reciprocal
lattice have the same characteristic and one can develop any vector in terms of these two sets
of basis vectors. So one can write R = uv-a+ v -b + w - c with suitable values for u, v and
w. This arbitrary vector connects the origin with the lattice plane in Fia. 22. N = % .
(ny -a* 4 ng - b* 4+ ng - ¢*) is the normalised vector on the plane.

The perpendicular distance D of the lattice plane to the origin is given by:

D = R-N=nj-u+ng-v+ng-w (2.4)

This equation is valid for all vectors B leading from the origin to the lattice plain and therefore
one can modify (2.4) with respect to the three crossings with the coordinate system axes:

D = ng-a,=ng-b,=n3-c¢, (2.5)

11



2 Beschreibung von Kristallen

The four equations (2.4) and (2.5) together build up the lattice plain equation:
hu+kv+lw = m (2.6)

Here h, k and [ are integer numbers. They are given by & 2 b— and * respectively with a suitable
value of m which is also integer. One can show, that (2. 6) is the mathematlcal description of the
mth lattice plane, counting from the lattice plane, that includes the origin. The vector

G = h-a*+k-b*+1-c* (2.7)

is a arbitrary reciprocal lattice vector and is perpendicular on the lattice plane under consideration.
It characterises the lattice plane completely using equation (2.6). The triple (hkl) is called as
aMiller’s index. F1G. 2.3 shows three examples for lattice planes together with their Miller’s
indexes.

2.2.1 Angle between two lattice planes

The angle between two lattice planes is equal to the angle between the corresponding normals on
the planes. Therefore equation

G- Go

cos(1h) =

(2.8)
is valid.

2.2.2 Interplanar distances

Moreover the interpretation of the integer number m makes it possible to calculate the interplan-
etary distance between two lattice planes with the same orientation. In a quadratic form one
gets:

1 1
d; = 2.9
¢ Crossing: (321) ¢ Crossing: (311) ¢ Crossing: (001)
Miller: [236] Miller: [133] Miller: [001]
)= LY F
o a
A a b
b
b

ABB. 2.3: Example of three lattice planes with the corresponing Miller’S indexes.
The basis vectors are different for the three cases, so the comparison of the
indexes is not sufficient for the comparison of the lattice planes.

12



2.2 Reciprocal lattice and Miller's indexes

Coordinate system

attributes simple body face base
centered face centered
cubic : :
a=b=c | o
a:ﬂ:")/:goo //‘ ”””” -
Fora ==
v = 60° the
trigonal trigonal
a=b=c lattice is
a=p=rv equal to the
face centered
cubic cell
tetragonal ;
a=b#c |
a=pf=~v=90° S -
hexagonal
a=b#c
a=06=90° || | ||
v # 90°
orthorhombic
aFb=¢f

monoclinic
a#b#c
a=y=90°#p
triclinic
aFZb#c
a#B#q

TAB. 2.1: The 14 Bravais lattices: For identification of the lattice con-
stants and angles see also F1G. 2.1
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2.3 Symmetrie Operations, Bravais lattices and point groups

Symmetry operations are transformations of a system, that remain the system unchanged. The
symmetry operation translation is the basic tranformation, that is valid for every crystal. Beside
this there are the following symmetry operations:

e Mirror planes (m): The system has a mirror plane with a certain orientation.

e Rotation (2, 3, 4, 6): There are 2,3, 4 and 6 fold rotation axes, i.e. the system turns to
itself by rotation of 360°/z.

e Inversion (1): The inversion inverts all spacial coordinates.

These symbols appear in groups of 1, 2 or 3 characters. The interpretation of a single character
is easy. For instance 6 means, that there is a 6-fold axis with a inversion , that has to used
after each rotation step by 60°. For symbols with 2 characters there are two types. The first
type says, that for 43 one has to apply a 3-fold symmetry axis, that is perpendicular to a 4-fold
axis. The meaning is different for 4/m. Now there is a 4-fold axis, that is perpendicular to a
mirror plane m. Symbols with 3 characters are understood in the same way as Symbols with 2
characters. However, here one has to use all three directions of space. As seen in the subsections
2.1 and 2.2 it is possible to describe a crystal not only by a single unit cell and single set of
basis vectors respectively. There are uncountably many lattice planes, which fulfil the condition
of peridicity and therefore can build up the “walls” of other unit cells. However, there are more
useful definitions of unit cells and less useful ones. In the end all these unit cells can be reduced
to a basic shape of the crystal lattice because of its intrinsic symmetry.

In general on distinguishes between 7 different groups of symmetry operations each of which
contains a certain amount of symmetry operations. These groups are {1, 2/m, mmm, 4/mmm, 3m, 6/mmm
und m3m} and represent the 7 coordinate systems, that are shown in TAB. 2.1.

Although the infinite crystal will always show the specific symmetry elements, the symmetry of
the unit cell can be reduced by certain configuration of the atoms. Nevertheless one sticks up to
the classification into the 7 coordinate systems. The reduced set of symmetry groups are the 32
point groups that are listed in TAB. 2.2 with their corresponding coordinate system.

Triklin | Monoklin | Rhombisch | Tretragonal | Trigonal | Hexagonal | Kubisch

1 2/m mmm 4/mnm 3m 6 /mum m3m

— — mm2 4mm 3m 6mm —

4/m é 6/m m§
1 2 222 422 32 622 432
42m 6m2 43m

— — — 4 3 6 23

4 6

TABLE 2.2: 32 kristallographische Punktgruppen unterteilt in die 7 Grundgittertypen

14



2.4 Stereographic projection

FIGURE 2.4: Stereographic projection: a) Shown is a lattice plane or a part of the surface of a
crystal. The corresponding pole is P/, P is the point in the projection with the coordinates
(p, ¥) and (¢, o) respectively. b) Equatorial plane (plane of the stereographic projection)
with the definition of the length o. c¢) The x’-z-projection is the layer, in which die connection
line and the pole lie.

2.4 lllustration of point groups und containing symmetries: Stereographic
projection

The stereographic projection is used to display the relation between the macroscopic crystal planes
and arbitrary lattice planes respectively in a 2dimensional way. Thus, it is necessary to project
the points of a sphere into a plane. (for labels and names see FiG. 2.4):

e The crystal is placed in a sphere with a radius of 1 in such a way, that the equator plane of
the sphere is the plane of the stereographic projection.

e Starting from the centre Lote f on the crystal planes are drawn up to the surface of the
spheres.

e The crossing points of these Lote with the surface of the sphere are called surface poles or
just poles P’. The poles of the northern hemisphere are connected with the south pole S
of the sphere, those of the southern hemissphere with the north pole N. The crossings P
with the equatorial plane are directly the points in the stereographic projection with the
coordinates (9, ) or (o, ¢).

e A pole on the northern hemisphere is drawn as a filled circle, pole in the southern hemisphere
is drawn as a ring.

15



2 Beschreibung von Kristallen

2.4.1 Lattice planes and zones in the stereographic projection: The Wulff net

In generell there are two basic methods to display a arbitrary lattice plane in the stereographic
projection.

Analytical method: The first method begins with the calculation of the reciprocal lattice vector
2.7, that is given by the Miller’s indexes of the lattice plane under consideration. This vector can
be described in Cartesian (x, y, z) or in spherical coordinates R, ¢ and ¢:

cos(y) sin(¥)
h-a*+1-b*+1-¢* = G = R- | sin(p) sin(9) (2.10)
cos(1)

From part c¢) of F1G. 2.4 one can see the relation

0 = R-tan (g) (2.11)

for the distance from the centre of the stereographic projection to point P. The angle ¢ can be
used without any transformation. This method can also be used in the opposite direction i.e.
when a point in the stereographic projection is given.

Meridians and parallels: Wulff net The description of meridians and parallels is done the best
ways in another notation FiG. 2.5. In this changed notation a lattice plane normal can be defined
by a longitude X and a latitude 1) angle. These angles are also known from the coordinate system
on the globe. Whereas meridians contain all poles with constant A - these are just the great

y
Y N FiG. 2.5: Definition of lon-
A7 gitude A and latitude
{ 1. Take care about

the change in orienta-
tion compared to the
figure FiGg. 2.4 for a
better viewing

circles of a sphere -, the so called parallels are the set of poles with constant 1. (see F1a. 2.6 for
help in geometrical understanding). The meridians are same as the crystallographic zones.

The Wulff net shows the stereographic projection of several meridians and parallels with certain
constant spacing in the values for A and . An implementation with a change in longitude and
latitude of 5°per step is shown in FiG. 2.7.

Usage of Wulff net: Geometrical method The Wulff net is the basis of the second method
that is a geometrical method. In principle it can be used for two different classes of tasks: One
can draw the stereographic projection for a given set of poles or one can get angular relations
between the poles in a given projection.

The first task gives more insight in the working principle of the net:

16



2.4 Stereographic projection

FIGURE 2.6: Meridians - poles with constant longitude A - and parallels - pole with constant
latitude ¢

e A projection is only valid for a certain orientation of the crystal. So at first the orientation
of the crystal with respect to the projection plane must be known and fixed. Fixing the pole
in the centre of the projection is sufficient. One says: “I draw the stereographic projection
in direction (111)”.

e The second pole in the projection - the first one was the pole in the centre - can be drawn at
an arbitrary angle ¢ in projection plane. Only the distance from the centre is relevant for
positioning the pole. This distance is in fact an angle given by (2.8) and has to be counted
in units of the Wulff net, i.e. in units of meridians from the centre meridian.

e The remaining pole are entered as follows:

— At first one has to calculate the angle towards the pole in the centre.

— Now the Wulff net is rotated around the centre point until another known pole lies on
the meridian A that is equal to the calculated angle. Now one knows, that the known
pole and the new lie on the same meridian, i.e. the two poles have the same longitude

A

— The difference in latitude A is the angular distance between these two pole and is
calculated again with the formula (2.8). One can measure it in stereographic projection
in units of crossings with the parallels in the net.

The second task is quite similar:

e To get the angular relation between two poles out of the stereographic projection, one has
to rotate the Wulff net until the two poles lie on the same meridians.

e Now the angular distance is given by the change in latitude ¢ from on pole to the other.

poles, that lie on the same meridian, belong to the same zone. If the Wulff net is orientated in such
a way, that the zone condition is visible, one can also mark the zone azis. This zone axis is normal
to the zone and the coordinates in the projection are given just the same as it is the case for a
simple pole. The coordinates are: Asone axis = Azone — 90° if Asone = 0° and Azone axis = Azone + 90°
otherwise. The other coordinate ¢,one axis = 360° — Qrarest pole from centre-
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2 Beschreibung von Kristallen

Fic. 2.7: Wulff net with di-
] visions Ay = 5° and
AN = 5°. The ori-

entation is x:— and

y:T.  Further imple-
mentations with vari-
ous divisions in A and
1 with different line
thicknesses are linked
here.

lllustration of pointgroups with the help of stereographic projection: The 32 point groups
build the irreducible group of combinations of symmetry operations in 3 dimensional space except
the translation. The single elements of this group can be distinguished and explained by their
stereographic projection. Starting from a single pole in the stereographic projection with the
Miller’s Indexes (h k1) the symmetry elements of the point group under consideration are applied
to the pole in the projection. One gets further poles on the basis of the contained symmetry
operations. If a pole is transferred to itself, one has left the general positions and the projection
is reduced to special positions of the poles. If this happens the number of poles in the projection
is reduced in comparison to the general positions.

F1G. 2.8 shows the stereographic projection of the point-
d 23 group mm2. It belongs to the orthorhombic coordinate sys-
gm 2) tem.
a..2)

=

The importance of this theory for the experiment lies in
the symmetry considerations, which are valid for the stere-
ographic projection just as for the laue diffraction pattern.
All symmetry elements of a point group must appear also in
the diffraction pattern. The diffraction has to reveal even
more symmetries as it cannot distinguish between point
groups with and without an inversion. So the 32 crystal-
FIGURE 2.8: General (black) and lographic point groups are reduced to 11 distinguishable
special (colored) positions of [ g4 groups.
the point group mm2 This means, that the diffraction pattern of a crystal with
a hexagonal unit cell will show a 6-fold rotation axes in
several diffraction orders (see 3) of the Laue record is the incoming beam is perpendicular to the
(001) lattice plane.
Further information and the description of all 32 point groups and their stereographic projection

9

18



2.5 Crystal structures and used crystals.

can be found in [ |-

2.5 Crystal structures and used crystals.
2.5.1 Quartz

Quartz is nothing else than silicon oxide SiOs in a special “
crystalline structure. In contrast to gallium arsenide the con- !
stituent atoms of Quartz Si and O do not build up two Bravais A g')l
lattices with a specific orientation to each other. Instead the oy
silicon atoms represent the centres of a tetrahedra. The cor- < et
ners of the tetrahedra are occupied by the oxygen atoms. (see A
F1G. 2.9). Since the stoichiometric relation of 1 Si atome per 2 Sy
O atoms is violated for a single tetrahedra, every single oxygen “ /
atom is connected with two silicon atoms and represent the
corners of two touching tetrahedra. The crystalline structure i
is the following: The first position of such a SiO4-tetrahedra
may be (000). By rotation of 120° and subsequent displace-
ment in the crystallographic c-axis one reaches the second po- ABB. 2.9:  Helixstructure of
sition of a tetrahedra: (—a/2v3a/2¢/3). Another screw rotation Quarz
leads to the third position in the unit cell:(—a/2 — v3a/2¢/3).

In FiG. 2.9 two helices with the length of 2 unit cells are shown. Combining all other atoms
of the structure, one can see the hexagonal unit cell of the crystal. The lattice constants are
a=4,9124 A and ¢ = 5,40039 A.

2.5.2 Zinc blend structure

Zinc sulfate (ZnS) occurs mainly in two configurations of solid state, the wurzite- and the zinc
blende structure. For the second structure the zinc atoms and the sulphur atoms build up two
separate cubic face centered lattices (fcc). Moreover these two lattices are displace by 1/4 (in units
of the diagonal) along the diagonal. FiG. 2.10 shows the atomic positions of the zinc and sulphur
in a single fcc unit cell of the crystal. It contains 4 zinc and 4 sulphur atoms, so the stoichiometric
relation is fulfilled.

® ’/n -—-— trigonale unit cell
® S tetrahedral bonds

FiGc. 2.10: zinc blend struc-
ture: a) shows the
fce-structure b) shows
the tetraedric struc-
ture, that is typical for
diamond structures.
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2 Beschreibung von Kristallen

The positions of the atoms in the unit cell in reference to the cubic basis vectors are:

Zn: {(000), (01/21/2),  (1201/2),  (Y21/20)}
S: A{(/al/aVje), (Ya3/a3/a), (3/41/43/a), (3/43/aT/a)}

Another example for the zinc blend structure ist Gallium arsenide, which is used in this exper-
iment. The cubic lattice constant is @ = 5,6533 A. Further information on this crystal can be
found in [Wik].

The diamond lattice is a special type of a zinc blend structure, as for diamond both types of
atoms are the same. Carbon, silicon and germanium can crystallise in this configuration.

(2.12)

Further literature to this topic can be found in [Dem05], [K1e98] and in Kristallographie I von
Walter Steurer and Thomas Weber. Unfortunately, these books are written in german. However,
there will also be much literature in English language.
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3 X-ray diffraction at crystals

3.1 Simple diffraction theory

For this section the standard literature of solid state physics is useful.

The simple diffration theory of X-rays is based on the following physical process: An incoming
plane wave with a wavevector k, (|k,| = k = 27/x) enters matter and induces the atomic electrons
to oscillations of the same frequency as the incoming wave. These oszillations give rise to the
emission of spherical waves. The intensity of the superposition of all scattered waves is observed
at an observation point B. The direction from the interaction point to this point is given by the
wavevector k of the outgoing wave. Since the refractive index of matter and air is nearly 1 for
X-rays, one can state |k| = k. The amplitude of the incoming wave at point P in matter is given

FiG. 3.1: Simple diffraction
theory

by:

Ap(r,t) = A,-e'koRotr)—iwot (3.1)

Here R, is the leading vector to the sample. At point P an electron is excited and emits a spherical

wave with a probability f. The amplitude of this wave at point B can be approximated by
et k-(R—r)

In order to calculate the amplitude of all diffracted wave at point B one has to integrate of the
total scattering volume of the sample. The spatial weighting is done by a spacial depending
electron density distributiono(r). Hence the integrated intensity at the observation point - only

Ap = Ap(rt)-f (3.2)

this quantity is measurable in the experiment - is given by:

-q

A2 m .
Gesamt Rigfz. / g(r)e’( o — K)7 g3, (3.3)

Streu-
volumen

Furthermore the charge density distribution shows the same periodicity like the crystal lattice.
Thus one can develop this function into a series of reciprocal lattice vectors.

Gr 1 —1G-r
o(r) = Z oc - €'ST & pg = Vi, /Q(r) eGPy (3.4)
G 0/
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3 X-ray diffraction at crystals

The sum of the series is independent from the integral in (3.3), so detach this sum from the total
integral and one gets for the remaining integral:

i(G—aq)7 g3, _ V firG=q
/e d’r { 0 sonst (3.5)

The extracted diffraction condition is the condition for constructie interference of all scattered
waves in point B:

q=k—-k, =G (3.6)
The measurable intensity can be formulated:

IGesamt _ igNQ f2 X ‘ ’2. (3 7)
B - R2 Oq :

3.2 The Laue equations

The multiplication of the equation (3.6) with each of the lattice base vectors a, b und c¢ leads to
the three Laue equations (using equations 2.1):

(h—ny)-a = h-\
(h—n,)-b = k- (3.8)
(n—n,)-c -\

Here the relations n = % and n, = % can be applied. In the experiment n and n, can be

determined directly from the Laue records. So the Laue equations deliver three conditions for
the four unknown quantities h, k, [ and A. A solution to this problem is not accessible without
further information about the unknown parameters. Fortunately it is known, that h, & und [ are
integer numbers. Therefore

fi—f,) a fi—f,) b

-l and k:(

(n—mn,)-c (h—n,)-c

1 (3.9)

must result in integer numbers, if [ is chosen to be integer. Using this information, one can
determine all four unknown parameters, if the orientation of the crystalline unit cell i.e the
cartesian representations of a, b and c in the laboratary coordinate system are known.

3.3 Ewald construction and the reciprocal space

The diffraction condition (3.6) can be interpreted geometrically using the Ewald construction:

e In this experiment the crystal is irradiated with polychromatic X-rays Therefore the absolute
value of the wave vector k = |k| = k,| can take all values in the interval k € [kmin, kmax] =
[27/Amaxs 27/ Amin]. Whereas Amin is determined by (1.6) and the maximum kinetic energy of
the accelerated electrons (in the case of X-ray tubes) Amax is limited only by the decrease
of intensity with higher wavelengths.
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3.4 Bragg's interpretation of the diffraction condition

e The reciprocal space is a 3dimensional space that is build up by the reciprocal lattice base
vectors (2.2). It contains the reciprocal lattice of the crystal and has the same units like k
(compare with 3.6). Hence, one it makes sense to draw the wave vectors of the incoming
and outgoing beams into the reciprocal space.

e Fi1G. 3.2 shows the ewald contruction in 2 dimensions. Two circles with the radii kyjn and
kmax are drawn in such way, that the cross each other in a single point of the reciprocal
lattice. The connection lines between the centre and this reciprocal lattice point have to be
parallel to each other and parallel to the direction of the incoming beam.

e The diffraction condition is now fulfilled for all reciprocal lattice vectors, that connect the
crossing point of the two circles with another lattice point in between the two circle and
the two spheres in 3D respectively. This is shown for a single set of incoming and outgoing
wave vector and a reciprocal lattice vector.

Fic. 3.2: Ewald construc-
tion: The lengths of
the shown wave vec- .
tors are Kmin, Fmax and
kmin < k < kmax-
All reciprocal lattice
points inside the cross .
hatched area lead to
a constructive interfer-
ence in the correspond-
ing directions. . . . . . . . o .

3.4 Bragg's interpretation of the diffraction condition

Bragg interpreted the diffraction condition 3.6 as a constructive interference at the lattice planes
of the crystals. The incoming X-ray beam is deflected like an optical beam optics according to
the well known reflection law: Is the difference in the optical length of the different paths through
the crystal in F1G. 3.3 just a integer multiple of the wavelength, the condition for constructive
interference is fulfilled.

The difference in the optical path lengths is given by:

m-A=As = thkl . Sin(ﬁ) (3.10)

dp is the distance between two neighbouring lattice planes, that can be calculated by means of
equation (2.9). m is a integer number and counts the order of the interference. In this case of
Laue diffraction of X-rays one can approximate the refractive index by n ~ 1.

It is possible to show the equivalence of the Laue equations (3.8) and Bragg’s equation (3.10) in
general.
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3 X-ray diffraction at crystals

Fia. 3.3: Bragg’s interfer-
ence condition: The in-
coming beam encloses
an angle 9 with the lat-
tice plane

3.5 Atomic form factor, structure factor and extinction rules

The scattered intensity in (3.7) depends on the absolute square of the Fourier transformed com-
ponent of the charge density distribution pg. Here G is just the reciprocal lattice vector for which
a constructive interference is observed. The integration 3.4 is done over the volume of the total
uni cell of the crystal.

Moreover it is possible to understand the total charge density as the sum of charge densities of
all atoms in the unit cell with the origin at the coordinates of the atoms 7,: ¥ = 7, + 7':

_ 1 ! —i1Gr'—iGry 33,/
06 = X/Z/Zg<ra+r>'e d’r
Zelle @

1 , Gt
— Viz ;e—zGra '/Qa(r,) ‘e—zG~r d37“/ (3'11)

fo

fa is the atomic form factor of the different atoms. The total sum is called structure factor of
the crystal. The only free parameters are the components of the reciprocal lattice vectors G and
the Miller’s indexes respectively.

Sa = Y fare G (3.12)
" (3.13)

The atomic form factor f, defined in (3.11) can be calculated for an angle 6 between G and 7
and a radial symmetric potential:

fa = /Qa(r’)e_iG'F,dgr’ (3.14)

8

= 27

—

1
/Qa(rl) e’iG’I‘"COS(@) 7',2 d/dCOS(G)
-1

2 sin(G - 1’)

e dr’ (3.15)
-r

0a(r") -7

I

N

3
0\8 o
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3.5 Atomic form factor, structure factor and extinction rules

As an example the structure factor of a cubic face centred crystal with a single type of atoms can
be expressed by:

Sgc — f. <1+em'(h+k)+e¢ri(k+l)+e7ri(l+h)>

Obviously, Sgc vanishes, if two of the integer numbers h, k and [ are even. Ezxtinction rules like
this and many others arise in dependence from the distribution of the atoms in the unit cell and
the relative values for the form factors of different atoms in the unit cell.

Further information can be found in | | and in Physik der Rontgenstrahlung.
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4 Versuchsbeschreibung

4 Versuchsbeschreibung

The experimental setup, procedure and tasks will be explained in this section. It is obligatory,
that the students comply with the mentioned safety and operation instructions.

£
4.1 Experimental tasks !
: 0
This section begins with the description of the experimental tasks that — i Qf —
has to be executed in this experiment. The various elements not men- ]
tioned in the theoretical part are explained in the following. A careful <

protocol of the experimental steps is of elementary importance. It is |

no problem to draw another sketch, on the other side a missing infor-

mation mostly is not accessible after finishing the experiment.

Determination of the orientation of a crystal : At first the two Imageplates (IP) has to be

erased and read out to be sure, that the are more signals stored in them. To guarantee
this one should do a test readout of the IPs. It’s important to handle the IPs with care.
Therefore they must only be moved with a small sucker.

A alpha-quatz crystal will be mounted on the sample holder of the Laue camera and adjusted
in such a way, that all angles of the goniometer show a value of 0°.

The camera will be equipped with the erased IPs in direction of reflection and transmission.
The illumination is done with a collimator diameter of 0.8 mm for 8 Minutes at a current
of 30mA and a acceleration voltage of 40kV. It is very important, that the IP carrier of
the camera is put together and mounted correctly. A comparison with the record of an
orientated sample from F1G. 4.1 should be done.

The aim of this task is to re-adjust the orientation of the crystal to its (110)-lattice plane.
The following steps have to executed:

e High symmetric reflexes has to be extracted and identified from the first record with the
help of the Greninger net. The characteristics of such high symmetric reflexes is that
many zones cross each other in theses points. Furthermore the are only few reflexes in
the direct vincinity of these symmetric reflexes. The identification of these reflexes is
done by a measurement of the angluar distances to each other with the Greninger net
in comparison with theoretical angles between low indexed lattice planes, i.e. reflexes
with Millers indices h, k, [ in the range of {—1,0,1}. It is advisable to prepare a table
of all these angles before starting the experiment. Moreover a measurement of the
distance sample to screen is necessary for the choice of the correct Greniger net.

e The orientation of the crystal is adjusted with the following iterative method. After
each record out of a series of about 3-5 illuminations the deviation of the (110)-reflexes
from the center of the record in A and v has to be measured. Now alternately one
of these two deviation angles is translated into a rotation of the sample with the
goniometer. After every variation another record has to be done. The first record
should lead to correction of the ¢ angle.

e A trouble-free and efficient experimental development is garantueed by a rigorous eras-
ing of the IPs after each read out. This can be reached by exposing the IP to moderate
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4.1 Experimental tasks

sunlight for about 10 minutes. Obviously it is usefull to change the IP from on record
to the other in order to shorten waiting times.

e In the end of the orientation process the (110)-reflex must not deviate more than 1°in

A and ¥ from the center of IP. Careful protocoling of the different records is obligatory.
Espacially the orientation of the IP in the Laue camera has to be well-known.

-
ay

Fig. 4.1: Laue record of a
SiOy crystal in direc-
tion of reflection. The
incident beam is par-
allem to the (110) sur- i _
face pole. The red d
marked meridians are ¢

L
Sy

-
¥
i
%.":

..___--..-.)..-__..___u.__

5
- ~

symmetry equivalent.
The meridian located
mostly in the 1st quad- —
rant contains the fol-
lowing poles: (11-1),
(0-10), (10-1),(-1-1-
1). The crossings of
this meridian with the
blue horizontal merid-
ian and the blue ver-
tical meridian are the
(0-10) and the (-1-1-
1) poles, respectively.

Calculation of Miller’s indexes out of a laue record: A part of a GaAs Wafer has to be adjusted
to its polished (111)-surface. Determine the Miller’s Indexes of the clearly visible Laue Spots
in the reflection pattern of GaAs. Furthermore the corresponding wavelengths should be
calculated. Think about a reasonable error treatment. Proceed in the following way:

e Define the axis of the laboratory system. Choose this system in such a way, that some
spots lie on the x or y-axis.

e (Calculate the normalized direction vectors n; from all reflection spots in the pattern -
leading from the crystal to spots in the laboratory system and vector of the incoming

beam n,.

e Define the base lattice vectors of the crystal system. determine the transformation
Matrix M from the crystal system to the laboratory system:

rps = M -res

Use the fact, that the crystal surface is not only a (110) lattice plane, but also perpen-
dicular to the direction of the incoming beam.
Is there a freedom left in the definition of M?
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4 Versuchsbeschreibung

e Transform the lattice base vectors from the crystal system representation to the labo-
ratory system representation and calculate the values:

)

o)

=
=>

7 k/:(

,
"= (A — f,)

(

-a fli—flo)-b
- C - C

=>

1

=

for each reflection spot.

e Calculate the Millers Indexes h, k, [ from the values h' and k' for the spots and the
corresponding wavelengths .

e Do an error discussion leading to estimations on the error of h, k, [ and A. This can
be done while dealing with the other parts of this task or in the end.

Analysis of a film record of a quarz crystal in transmission The Quarz crystal of the first task
will placed inside the Laue-Camera with an arbitrary orientation. Light sensitive photofilms
will be installed in direction of reflection and transmission and illuminated for about 10
hours. After the development of the films in the photo laboratory, several reflexes have to
be transferred to a transparency. Extract 7 meridians with the help of the Leonhardt net
and transfer the corresponding lattice poles to the Wulff net (stereographic projection). The
positions of the single reflexes on the meridians have to be transferred, too.
In which area of the stereographic projection do you find the reflexes of the transmission
record, where the reflexes of the reflection record?

4.2 Elements of the experiment
4.2.1 Safety warnings and instruction rules

e The laser can only be used with suitable safety or adjustment glasses.

_current | || ||| High voltage

ABB. 4.2: Usage of the X-ray system
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4.2 Elements of the experiment

e it’s not allowed to open the doors of the X-ray rack before switching off the power supply
of the x-ray tube. Opening the X-ray rack without switching off the power supply will case
an emergency shut down of the power that can probably damage the system.

e However, the system will react with an emergency shutdown, if the rack is not opened in
accordance with the regulations. So there is no possiblity for enhanced radiation exposition.
It is not allowed to switch on the power supply by deactivation of the security measures.

e In order to prevent a damage of the X-ray system the high voltage has to be increased in
small steps like 0.1/kvs. The same is true for the current: 0.1/mAs

e At the beginning of the experiment, the X-ray system is the heating mode. Before switching
on the power supply, one should check the values of the high voltage and the current:
Viin = 20kV and Iin, = 5mA. After turning on the voltage the voltage has to be increased
up to value of Upax = 40kV. After that the electron current will be increased to a level of
Imax = [30]mA. For shutting down the system the described procedure is reversed.

4.2.2 Laue-camera

In F1G. 4.3 one can see a photo of the Laue camera together with the goniometer and the sample
crystal. In direction of reflection one can see a plate, which contains the X-ray film of the image
plate. Moreover the connection to the X-ray tube is shown.

X-rays switched on Plate with X-ray film
and shutter open in reflection direction

Fi1G. 4.3: Laue-Kamera

4.2.3 Laserjustierung

The laser adjustment of the crystal surface is done with a metal plate, that contains a laserpointer
and a photo diode. The laser beams is reflected directly onto the sensitive area of the photo diode,
if the distance to the sample and the orientation of the crystal surface is chosen correctly.

The power supply (10V) is connected with the blue (-) and the red (+) connection pin. The
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4 Versuchsbeschreibung

yellow led must shine otherwise the photodiode might be damaged. Therefore the polarity of the
power supply has to be checked with the multimeter. After that the multimeter is connected with
the green and yellow connector pins. This signal is nearly proportional to the intensity of the
incoming light. A first adjustment is done with the help of the eye. After that the orientation of
the crystal has to be varied in such a way, that the voltage on the multimeter is maximal.

Photo diode
sample ;

/

Safety glasses Power supply box FiG. 4.4: Laser adjustment
of the crystal surface

4.2.4 Projektionen der Reflexe

The Laue records can only be analysed, if the projection of the Reflexes on the detection plane is
understood. At first & is defined by (3.6) for a certain lattice plane.

zone axis 1

Fia. 4.5: Geometry of the
transmission direction:
The spots on the screen
can be classified to one
of the two meridians
i shown.
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4.2 Elements of the experiment

Fic. 4.6: Geometry of
the reflection direction:
One can see the Laue ~_|
spots of three different g
meridians. The shown i

zone axis and its angle g, sirahirichtune | .
to the incident beam

. . /
direction 1 corresponds
to the upper of the
three meridians. J

The projection of the laue reflexes on the screen is quite simple. However, not the reflexes are of
interest, but the corresponding poles. In order to get the coordinates A and 1 of the plane poles,
one has to consider an additional distortion. Just as it was comfortable to use the Wulff chart
for the work within the stereographic projection, it is now also useful to create a chart showing
the lines, that would contain Laue reflexes of equal longitude and latitude in one chart. It is
important to realize, that in contrast to the Wulff chart it is not important to choose the correct
sample-film-distance for the chart. In the case of the reflection one has to use the Greninger- | in
case of the transmission the Leonhardt-chart (F1G. 4.7). The parametrisation of the curves and
further detailes are derived in the reference [BerG5]. Fi1G. 4.5 and F1G. 4.6 give an impression on
the geometry of the projections.

Zonenachse

=% S =% oy
/// % 2 N \\\\ /// ® 3 po¥ N\
////%////// / 80 g0 100 \\\\\\\\\ ////%////// / 80 90 100 \\\\\\\\\\\
7 A\ 7 A\
iy iy

D=35mm D=35mm

ABB. 4.7: Greninger- (left) und Leonhardt chart (right). the inner structures correspond to
A =1 = 0° for the Greninger chart and A = 90°, ¥ = 0° for the Leonhardt char.

The distance of the sample to the screen is |[D| = 35 mm.
The connection between the real coordinates of the stereographic projection and the two charts
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4 Versuchsbeschreibung

are depicted in F1G. 4.8 and F1G. 4.9. The corresponding transformationsare given by::

Reflection direction: Transmission direction:
D < 0 D > 0
1 1
v = 3 arctan (—%) (4.1) 9 = g ~3 arctan (——) (4.3)
t v t v
= tan| — = tan | —
P 2 “ 2
— tan | - arct (i) (4.2) — tan [T = L aret (ﬁ)(44)
= tan 1 arctan D ) = tan 11 arctan D )
- T

Fic. 4.8: Calculation of
the coordinates in the
Greningerchart

[
N
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4.2 Elements of the experiment

[SIS3

T — 219

Fic. 4.9: Calculation of
the coordinates in the
Leonhardt chart

4.2.5 Filmentwicklung und Imageplate-system

X-ray film development The film development is done in a dark room with the help of common
development and fixing baths. The time for development adds up to approximately 1 minute, the
fixing is done in 7 minutes. After that the film is washed out in water for about 20 minutes and
died for 45 minutes.

Imageplate-system One has to stick to the operation manual in order to prevent damage of the
System.

4.2.6 Literature of comparable experiments (german)

Further literature is linked in the following list:
e Alexander Heide: Debye-Scherrer-Verfahren und Laue-Verfahren
e Tim Haupricht und Matthias Heidemann: Rontgenographische Methoden

e Carola Eyfell und Tim-Oliver Husser: Kristallzucht und Réntgenbeugung
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