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Abstract

In this project, students get – on a practical level – familiar with
the concept of renormalization and the computation of quantum cor-
rections in a relativistic quantum field theory, which allows to make
predictions for physical observables beyond the Born approximation.

The goal of this project is to derive the one-loop renormalization
constants of quantum electrodynamics (QED), and to use them for
the computation of the one-loop correction to the anomalous magnetic
moment of the electron. For both tasks a computer-based approach is
envisaged, based on the programming language Mathematica.

As a prerequisite the students should have attended Theoretical
Particle Physics 1 and 2. The lecture on loop integrals is beneficial
but not mandatory. Also basic knowledge about a computer algebra
program such as Mathematica is beneficial.

Prior to starting this project

• Contact the supervisor about access to Mathematica.
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1 Introduction
The computation of perturbative corrections to particle reactions in the
framework of quantum field theory plays an essential role in contemporary
particle physics research. The main goal is to increase the precision of theo-
retical predictions for particle reactions and to compare them to experimen-
tal measurements, whose statistical uncertainties also decrease as more and
more data becomes available. In this way, one hopes to disentangle small
deviations between theory and experiment, which might hint for new, yet
undiscovered fundamental physical effects.

Historically, it turned out to be extremely difficult to get access to quan-
tum corrections in relativistic field theory since it was unclear how to consis-
tently formulate the relativistic quantum field theory of electrons and pho-
tons, and how to handle the occurring divergencies when computing quan-
tum corrections. The breakthrough was achieved by Feynman, Schwinger
and Tomonaga in the 1940s [1–4], and the O(α)-correction to the anomalous
magnetic moment ge of the electron represented a seminal milestone [5]. Ever
since, corrections of higher order in the fine structure constant α ∼ 1/137
have become available, and resulted in a striking agreement between theory
and experiment, as the following numbers for ae = (ge − 2)/2 show.

ae = 0 (leading order)

ae =
α

2π
≈ 0.0011614 (to O(α)) [5]

ae = 0.001159652181643(764) (to O(α5)) [6, 7]

ae = 0.00115965218073(28) (experimental value) [8] .

Since then, countless quantum corrections to particle-physics observables
have become available, and have confirmed the need of these contributions
to describe experimental data accurately. In some cases, however, discrep-
ancies between theory and experiment persist, as is currently the case for
the anomalous magnetic moment aµ = (gµ − 2)/2 of the muon [9–11], see
left panel of figure 1. Here, there are hadronic loop corrections which are
hard to calculate (last two diagrams of figure 1) and which are subject to
contemporary research.

Only for the simplest cases it is feasible to perform a loop calculation by
hand. Therefore, the computer became an indispensable tool in carrying out
loop calculations in quantum field theory. Many dedicated programs were
developed, tailored for particular steps of the calculation or for carrying out
the calculation as a whole.
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Figure 1: The anomalous magnetic moment of the muon [9–11].

In this project, we first get familiar with the theory of quantum electrody-
namics (QED), the basics of regularization (in particular dimensional regular-
ization) and renormalization, and the Mathematica package FeynCalc,
which allows to automate many one-loop calculations. The task will then
be to use the FeynCalc package to renormalize QED at the one-loop level
in the so-called pole scheme, and to obtain the one-loop correction to the
anomalous magnetic moment of the electron.

2 Quantum electrodynamics
Quantum electrodynamics (QED) is a relativistic, quantum-field-theoretic
description of the electromagnetic interaction of electrons and positrons with
photons.

2.1 Lagrangian density, gauge symmetry

The Lagrangian density of QED reads

L = −1

4
FµνF

µν︸ ︷︷ ︸
free photon field

+ ψ̄(i/∂ −m)ψ︸ ︷︷ ︸
free electron field

+ e ψ̄ /Aψ︸ ︷︷ ︸
interaction

.

Here ψ is a Dirac spinor describing the fermion (electron, positron), Aµ
is a vector field describing the photon, and Fµν = ∂µAν − ∂νAµ is the field
strength tensor. m is the fermion mass, and e =

√
4πα the electric charge of

the positron (α ∼ 1/137 is the fine structure constant). In L we distinguish
terms that describe free fields from interaction terms. The former contain
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at most two fields, and are classified as mass terms (with masses) or kinetic
terms (with derivatives). The interaction terms have more than two fields.

The Lagrangian density of QED is invariant under the local gauge trans-
formation

ψ(x)→ ψ′(x) = eieΛ(x) ψ(x) ,

Aµ → A′µ(x) = Aµ + ∂µΛ(x) .

Moreover, the interaction term can be obtained from the theory of free fields
by means of a procedure called “minimal substitution”,

∂µ → Dµ = ∂µ − ieAµ(x) .

Dµ is called the “covariant derivative”.

2.2 Feynman rules

The Feynman rules that can be derived from the Lagrangian density are
classified as propagators, external lines and vertices, and are usually given in
momentum space.

The propagators are the Green’s functions of the free field equations (e =
0), e.g. for the electron

(i/∂ −m)G(x) = δ(4)(x) ,

which after Fourier transformation

G(x) =

∫
d4p

(2π)4
e−ipx G̃(p) , δ(4)(x) =

∫
d4p

(2π)4
e−ipx

gives

G̃(p) =
/p+m

p2 −m2 + iη
.

The electron propagator is then S̃(p) = i G̃(p), and the infinitesimal η > 0
moves the poles away from the real axis such as to have causal boundary
conditions. The attempt to perform analogous steps to derive the photon

propagator Dνρ(x) =

∫
d4p

(2π)4
e−ipx D̃νρ(p) from

(−gµν� + ∂µ∂ν)D
νρ(x) = −δρµ δ(4)(x)
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fails since the equation

(p2gµν − pµpν)D̃νρ(p) = −δρµ

cannot be inverted (Mµν = p2gµν − pµpν has an eigenvalue zero due to
pµMµν = 0). One possible solution is to add a gauge-fixing term to L,

L → L− 1

2ξ
(∂µA

µ)2 ,

which then gives

D̃νρ(p) = −
gνρ − (1− ξ) pνpρ

p2+iη

p2 + iη
.

The photon propagator is then ∆̃νρ(p) = i D̃νρ(p). ξ is called gauge param-
eter . Physical observables do not depend on ξ. One of the common choices
is the Feynman gauge ξ = 1 which we will use throughout.

The Feynman rules for the external lines can simply be taken from the
classical solution of the free field equations. For the electron/positron we
get the familiar spinors u(p, s), ū(p, s), v(p, s), v̄(p, s) for incoming/outgoing
(anti)fermion. For the photon we obtain the polarization vector εµ(p, λ).

In order to derive Feynman rules for interaction vertices from L we first
give the general prescription, together with an example, and subsequently
apply it to QED. The recipe consists of four steps

1. Search for all products in L containing a previously specified combina-
tion of fields. These form the external lines of the vertex.

E.g. −g(∂µAν)A
µBν = −g(∂µA

ρ)gρνA
µBν

2. Replace all derivatives by (−i) times the incoming momenta of the
fields on which they act.

−→ −g(−iqµ)gρνA
ρAµBν = ig(qµgρν)A

ρAµBν

3. Sum over all permutations of the indices and momenta of identical
external fields. (Note that ψ and ψ̄ are not identical fields!)

−→ ig(qµgρν + q′ρgµν)A
ρAµBν
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4. Discard all external fields.

−→ ig(qµgρν + q′ρgµν) .

Applied to QED we find

1. ieψ̄γµψAµ

2. ieψ̄γµψAµ

3. ieψ̄γµψAµ

4. ieγµ.

These rules are supplemented by the following items

• Impose four-momentum conservation at each vertex

• Integrate over each unconstrained (loop) momentum with measure
∫

d4k

(2π)4

• Along a fermion line, order the Dirac matrices and spinors opposite to the
direction of fermion flow.

• Include a factor (−1) and a Dirac trace for each closed fermion loop.

• Include a factor (−1) when permutating external fermion lines in processes
with more than one diagram.

More on Feynman rules in QED and other theories can be found in the
literature on quantum field theory, e.g. [12–16]). We summarize the QED
Feynman rules below.

2.3 QED Feynman rules, summary
p

=
i(/p+m)

p2 −m2 + iη

pµ ν
= −i

gµν − (1− ξ) pµpν

p2+iη

p2 + iη

µ
= ieγµ

p,s
= u(p, s)

p,s
= ū(p, s)

p,s
= v̄(p, s)

p,s
= v(p, s)

p,λ
µ

= εµ(p, λ)

p,λ
µ

= ε∗µ(p, λ)
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Figure 2: One-particle irreducible one-loop diagrams in QED.

2.4 One-loop QED diagrams

In order to renormalize QED at the one-loop level, we need to consider the
one-particle irreducible (1PI) one-loop diagrams of QED, which are the elec-
tron self energy (left panel of figure 2), the vacuum polarization (middle),
and the vertex correction (right). The 1PI diagrams are defined without the
external lines. Let us apply the QED Feynman rules to the three cases in
turn.

Electron self-energy The amplitude reads

−iΣ1L =

∫
d4k

(2π)4
(ieγµ)

i(/k +m)

[k2 −m2 + iη]
(ieγν)

−igµν

[(k − p)2 + iη]

Vacuum polarization The amplitude reads

iΠµν
1L = −Tr

[∫
d4k

(2π)4
(ieγµ)

i(/k +m)

[k2 −m2 + iη]
(ieγν)

i(/k + /q +m)

[(k + q)2 −m2 + iη]

]
Vertex correction The amplitude reads

Λµ
1L =

∫
d4k

(2π)4
(ieγρ)

i(/k + /p′ +m)

[(k + p′)2 −m2 + iη]
(ieγµ)

i(/k + /p+m)

[(k + p)2 −m2 + iη]

× (ieγσ)
−igρσ

[k2 + iη]

We will see below that we have to slightly modify these expressions in the
framework of dimensional regularization.
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3 Regularization and renormalization

The integration over the loop momentum kµ with integration measure
∫

d4k

(2π)4

oftentimes results in divergences as the components |kµ| → ∞, so-called UV-
divergences. In order to make higher orders in perturbation theory manage-
able, one therefore has to

1. Extract the divergent and the finite pieces of each integral, preferrably
in a way that does not spoil the underlying symmetries (Lorentz invari-
ance, gauge invariance, . . . ). This procedure is called regularization.

2. Absorb the extracted infinities into so-called counterterms (see below)
to make the results of scattering amplitudes finite also beyond the Born-
level. This procedure is called renormalization.

We leave the formal aspects of renormalization to the quantum-field theory
literature [12–16]) and take a practical approach here.

3.1 Dimensional regularization

In contemporary particle physics the most-applied regularization scheme is
dimensional regularization (dim. reg.). The idea is to perform a transition
from D = 4 to D = 4−2ε (ε small) space-time dimensions according to well-
specified rules given below. The divergences of a loop integral then occur
as poles in ε, together with finite parts and higher order in ε. The main
advantages of dimensional regularization are that it conserves all underlying
symmetries, that it can be analytically continued to complex values of D,
and that many relations can be algorithmically implemented on a computer.
A drawback arises in calculations involving the Dirac matrix γ5.

How is the transition from D = 4 to D = 4− 2ε realized in practice?

• In loop integrals, replace
∫

d4k

(2π)4
−→

∫
dDk

(2π)D
.

• In phase-space integrals, replace∫
d3~p

(2π)32p0
−→

∫
dD−1~p

(2π)D−12p0
,

(2π)4 δ(4)(pf − pi) −→ (2π)D δ(D)(pf − pi)

• In the calculation with Lorentz indices, one has to take into account
that gµµ = D. Other than that, the calculation with Lorentz indices
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remains basically unchanged, e.g. raising and lowering indices work as
before.

• There are also consequences on the Dirac algebra. While the form of the
Clifford algebra {γµ, γν} = 2gµν remains unchanged, the appearance of
the D-dimensional metric on the r.h.s. alters the contractions,

γµγµ = D ,

γµγαγµ = (2−D)γα ,

γµγαγβγµ = 2γβγα − (2−D)γαγβ

etc. For the computation of Dirac traces one defines Tr(1) = 4, which
makes traces such as Tr(γµγν) = 4gµν look as before, with the D-
dimensional metric appearing again on the r.h.s.

• The canonical (mass) dimension of various quantities changes. The ac-
tion must remain dimensionless since we want to make it minimal/sta-
tionary due to the principle of least action, [S] = 0. [xµ] = −1 and
[m] = 1 also remain unchanged.

Q: Using S =

∫
dDxL with the QED Lagrangian L = −1

4
FµνF

µν +

ψ̄(i/∂ −m)ψ + e ψ̄ /Aψ, what is the canonical dimension of L, Aµ, ψ, e?
What is the canonical dimension of a scalar field φ(x)?

• Scaleless integrals vanish in dimensional regularization,

e.g.
∫

dDk

(2π)D
(k2)α = 0.

3.2 The counterterm method

The essence of the counterterm method is to treat the quantities in the
Lagrangian density as so-called bare quantities , indicated by and index 0,

L0,QED = −1

4
F µν

0 F 0
µν + ψ̄0(i/∂ −m0)ψ0 + e0 ψ̄0 /A0 ψ0

= −1

4
(∂µA

0
ν − ∂νA0

µ) (∂µAν0 − ∂νA
µ
0) + ψ̄0(i/∂ −m0)ψ0 + e0 ψ̄0 /A0 ψ0 .

Here A0
µ and ψ0 are the bare fields, m0 is the bare mass, and e0 is the

bare coupling. The gauge fixing term is not relevant for this particular discus-
sion. We now relate the bare quantities to so-called renormalized quantities
(without index 0) via multiplicative Z-factors ,
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Aµ0 =
√
Z3A

µ , m0 = Zmm,

ψ0 =
√
Z2 ψ , e0 =

Z1

Z2

√
Z3

e µ̃ε .

The reason for introducing Z1 in the specific combination of the last
equation will become clear later on. Into the Z-factors we will absorb the
infinities arising from loop calculations according to certain well-defined rules
(= renormalization schemes), to be specified below. In the above equations
we also introduced the quantity µ̃ which is related to the so-called renormal-
ization scale µ via

µ̃2 = µ2 eγE−ln(4π) .

γE = lim
n→∞

[
−ln(n)+

n∑
k=1

1

k

]
' 0.5772 is the Euler-Mascheroni constant. Both

µ and µ̃ have mass-dimension +1 and are required to make the renormalized
coupling dimensionless. Further useful relations in this context are

µ̃2ε =
1

(4π)ε
eε(γE+ln(µ2)) ,

µ̃2ε

(4π)D/2
=

1

(4π)2
eε(γE+ln(µ2)) .

We now write the Lagrangian in terms of the renormalized fields,

L0,QED = −1

4
Z3 F

µν Fµν + Z2 ψ̄i/∂ψ − Z2 Zmmψ̄ψ + e µ̃ε Z1 ψ̄ /Aψ

and split it up into

L0,QED = −1

4
F µν Fµν + ψ̄(i/∂ −m)ψ + e µ̃ε ψ̄ /Aψ

− 1

4
(Z3 − 1)F µν Fµν + (Z2 − 1) ψ̄i/∂ψ − (Z2 Zm − 1)mψ̄ψ + (Z1 − 1) e µ̃ε ψ̄ /Aψ.

The first term is the usual QED Lagrangian, expressed in terms of renor-
malized quantities. It is used to derive propagators and vertices in the usual
way. While the rules for propagators and external lines remain unchanged,
the vertex now becomes

µ
= ieµ̃εγµ
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The second line in the above equation is the so-called counterterm La-
grangian LCT. It is treated as an interaction Lagrangian although it contains
terms that have fewer than three fields. Its Feynman rules are

p p

= i
[
(Z2 − 1)/p− (Z2Zm − 1)m

]
p pµ ν

= −i(Z3 − 1)
[
p2gµν − pµpν

]
µ

= i(Z1 − 1)eγµ

The Z-factors are expanded in powers of α according to

Zi = 1 +
α

4π
δZ

(1)
i +

( α
4π

)2

δZ
(2)
i + . . . .

3.3 Renormalization schemes

There exist several renormalization prescriptions, referred to as renormaliza-
tion schemes , of which we summarize two of the most common ones below.

Pole scheme (on-shell scheme). The condition for the on-shell scheme
is that the 1PI two-point function has, in the vicinity of the physically mean-
ingful (on-shell) point, the same form as in the free theory.

In practice this means that for the electron self-energy we must require
that the overall one-loop correction around the point /p = m vanishes up to
linear order in (/p−m), which gives

Σ1L + ΣCT = (Σ1L + ΣCT )|/p=m︸ ︷︷ ︸
!
= 0

+
∂

∂/p
(Σ1L + ΣCT )|/p=m︸ ︷︷ ︸

!
= 0

(/p−m) +O((/p−m)2)

ΣCT is the counterterm contribution at O(e2).
In the case of the vacuum polarization the on-shell point is at q2 = 0.

Writing Πµν = (gµνq2 − qµqν) Π(q2) (this form is required by gauge invari-
ance), the on-shell renormalization condition reads

Π1L + ΠCT |q2=0

!
= 0 .
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Finally the vertex correction at the on-shell point p2 = p′ 2 = m2, q = 0
can be related to the counterterm of the electron self-energy, resulting in

Λµ,OS
1L = −ieµ̃ε (Z2 − 1) γµ .

Together with Λµ
CT = ieµ̃ε (Z1 − 1) γµ and the condition Λµ

1L + Λµ
CT = 0, we

derive the relation Z1 = Z2. This identity is called Ward identity and is a
consequence of gauge invariance. We derived it to one-loop order and in the
on-shell scheme, but it holds to any order and in any renormalization scheme
(as long as Z1 and Z2 are renormalized in the same scheme).

MS scheme. In the modified minimal subtraction scheme we subtract only
divergences, no finite or higher parts in the ε-expansion. The Z-factors there-
fore contain only pole-terms in ε. The three conditions read

Σ1L + ΣCT
!

= finite ,

Π1L + ΠCT
!

= finite ,

Λµ
1L + Λµ

CT
!

= finite .

4 Loop integrals
We summarize here some of the techniques to calculate loop integrals. The
simplest non-trivial one-loop integral is

In(m2) =

∫
dDk

(2π)D
1

[k2 −m2 + iη]n

with an infinitesimal quantity η > 0 to shift the poles of the propagator away
from the real axis. We look at the k0-integration first,

In(m2) =

∫
dD−1k

(2π)D

∫
dk0

1

[k2
0 − ~k2 −m2 + iη]n

and note that the poles are at k±0 = ±
√
~k2 +m2 − iη = ±

√
~k2 +m2 ∓ iη,

where the last equality made use of η being infinitesimal. We now perform
a so-called Wick-rotation by integrating along the contour C displayed in
figure 3,

0 =

∮
C

dk0
1

[k2
0 − ~k2 −m2 + iη]n
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Figure 3: Graphical representation of the Wick rotation in the complex k0-

plane. The dots denote the poles of the propagator at k±0 = ±
√
~k2 +m2 − iη.

and use that the contribution of the circles vanishes as the radius tends to
infinity. This allows us to express In(m2) as

In(m2) = i(−1)−n
∫
dDkE
(2π)D

1

[k2
E + (m2 − iη)]n

,

where now k2
E = (k0

E)2 +~k2 with k0
E = −ik0 has underlying euclidean metric.

Looking at the integral, we see that it depends only on k2
E, which tells us that

it is a good idea to introduce D-dimensional spherical coordinates according
to

dDkE = dΩD dr r
D−1

with r2 = k2
E and the D-dimensional solid angle dΩD which satisfies∫

dΩD =
2πD/2

Γ(D/2)
.

The final answer for In(m2) is

In(m2) =
i(−1)−n

(4π)D/2
Γ(n−D/2)

Γ(n)
(m2 − iη)D/2−n .
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4.1 Classification of one-loop integrals

The notation for one-loop integrals is standardized, and the various integrals
are defined as

A0(m2) =
(2πµ)4−D

iπ2

∫
dDk

1

[k2 −m2 + iη]
=

(2πµ)4−D

iπ2
(2π)D I1(m2)

= −m2

(
4πµ2

m2

)2−D/2

Γ

(
2−D

2

)
= −m2

(
4πµ2

m2

)ε
Γ (ε− 1)

= m2

[
1

ε
− γE + ln(4π)︸ ︷︷ ︸

=:∆div

+ ln

(
µ2

m2

)
+ 1 +O(ε)

]

where we extracted the divergent and the finite pieces explicitly.
The next integral is

B0(p2,m2
1,m

2
2) =

(2πµ)4−D

iπ2

∫
dDk

1

[k2 −m2
1 + iη] [(k + p)2 −m2

2 + iη]
.

We combine the two denominators by means of Feynman parameters accord-
ing to

1

AnBm
=

Γ(n+m)

Γ(n)Γ(m)

1∫
0

dx
xn−1(1− x)m−1

[Ax+B (1− x)]n+m

and complete the square with respect to k. After the shift k → k − p(1− x)
we can use the result for In(m2) to arrive at

B0(p2,m2
1,m

2
2) = (4πµ2)ε Γ (ε)

1∫
0

dx
1

[m2
1x+m2

2(1− x)− p2x(1− x)− iη]
ε

= ∆div −
1∫

0

dx ln

(
m2

1x+m2
2(1− x)− p2x(1− x)− iη

µ2

)
+O(ε) .

For integrals with more than two denominators we can use this procedure
iteratively. Note that the integral

C0(p2
1, (p1 − p2)2, p2

2,m
2
1,m

2
2,m

2
3) =

(2πµ)4−D

iπ2

∫
dDk

1

[k2 −m2
1 + iη] [(k + p1)2 −m2

2 + iη] [(k + p2)2 −m2
3 + iη]
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develops an infrared (IR) divergence if one of the masses vanishes. This
results in a pole in ε which is not captured by the FeynCalc package since
it extracts only ultraviolet (UV) divergences (i.e. those arising from large
|kµ|).

For vector and tensor integrals we adopt the so-called Passarino-Veltman
reduction, which we outline with a few examples. We start with the vector
integral

Bµ =
(2πµ)4−D

iπ2

∫
dDk

kµ

[k2 −m2
1 + iη] [(k + p)2 −m2

2 + iη]
,

whose Lorentz-decomposition must be of the form

Bµ = pµB1

since after the loop integration pµ is the only remaining four-vector the inte-
gral can depend on. We now contract the last equation with pµ and write

2 k · p = [(k + p)2 −m2
2]− [k2 −m2

1]− (p2 −m2
2 +m2

1)

to cancel as many denominators as possible. We then arrive at

2 p2B1 = A0(m2
1)− A0(m2

2)− (p2 −m2
2 +m2

1)B0(p2,m2
1,m

2
2) .

For the tensor integral

Bµν =
(2πµ)4−D

iπ2

∫
dDk

kµkν

[k2 −m2
1 + iη] [(k + p)2 −m2

2 + iη]

the ansatz reads

Bµν = gµν B00 + pµ pν B11 .

Contracting this equation first with gµν and subsequently with pµ pν yields
the following linear system of equations for the two unkowns B00 and B11,

DB00 + p2B11 = A0(m2
2) +m2

1B0(p2,m2
1,m

2
2)

B00 + p2B11 =
1

2
A0(m2

2)− 1

2
(p2 −m2

2 +m2
1)B1 .

The ansatz for

Cµ =
(2πµ)4−D

iπ2

∫
dDk

kµ

[k2 −m2
1 + iη] [(k + p1)2 −m2

2 + iη] [(k + p2)2 −m2
3 + iη]

would read Cµ = pµ1 C1+pµ2 C2 and so on. In general the ansatz has to include
all tensor structures that can be formed out of the independent external
momenta and the metric. The package FeynCalc is also able to perform the
Passarino-Veltman reduction. The program package-X [19] contains results
for the one-loop integrals A0, B0, C0, . . . for various kinematic configurations.
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5 The Mathematica package FeynCalc
FeynCalc is a Mathematica package for the automated calculation of
amplitudes and cross sections in quantum field theory, currently at ver-
sion 9.3 [18]. The package FeynHelpers [20] connects FeynCalc and
package-X, thus allowing to easily use the known one loop integrals within
FeynCalc (without worrying about different conventions). We summarize
some of the most frequently-used commands here, and refer to [18] and [20]
for more information

• Pair[LorentzIndex[µ], Momentum[v]]

Denotes the four-momentum vµ. The command Pair also allows to in-
put the metric (Pair[LorentzIndex[µ], LorentzIndex[ν]]) and
scalar products (Pair[Momentum[u], Momentum[v]]).

• MetricTensor[µ, ν]

Alternative way to input the metric.

• Eps[LorentzIndex[µ],LorentzIndex[ν],LorentzIndex[ρ],
LorentzIndex[σ]]

Levi-Civita tensor, always assumes upper indices and uses ε0123 = +1. If
contracted with momenta, can write for example Eps[LorentzIndex[mu],
LorentzIndex[nu], Momentum[p], Momentum[q]] for εµναβpαqβ.

• Contract[expr]

Contracts equal indices in expr.

• DiracGamma[LorentzIndex[mu]], DiracGamma[5],
DiracGamma[Momentum[p]]

Dirac matrices γµ, γ5, and /p.

• GA[mu], GA[5], GS[p]

Like before, but in a shorter (external) notation. FCI and FCE (for Feyn-
CalcInternal/External) switch between the two notations. Note that the
two notations also have different FullForm.

• GA[6], GA[7], short-hand notation for the projectors PR/L = (1±γ5)/2.

• GA[mu].GA[nu] or simply GA[mu,nu]. Product γµγν of Dirac matrices

• DiracSigma[GA[mu, nu]], σµν .
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• DiracReduce[expr]

Reduces expr to the basis {1, γ5, γ
µ, γµγ5, σ

µν} of bilinear covariants.

• When working in dimensional regularization, D-dimensional quantities
have to specified explicitly, e.g.
Pair[LorentzIndex[µ, D], Momentum[p, D]],
DiracGamma[LorentzIndex[µ, D], D],
GAD[µ], GSD[p] etc.

Note that if both four- and D-dimensional objects appear, everything is
calculated in four dimensions!

• Tr[expr]

computes the Dirac trace of expr. Warning: Traces without explicit Dirac
structures are not evaluated.

• There are various commands to simplify expressions, such as
DiracSimplify, DiracReduce, Calc, DotSimplify, DiracOrder.

• To work with loop functions we can use
FeynAmpDenominator[PropagatorDenominator[Momentum[k, D],
m]] to input a loop propagator. The short-hand (external) notation would
be FAD[k, m]. For several propagators, write e.g.
FeynAmpDenominator[PropagatorDenominator[Momentum[k, D],
m1], PropagatorDenominator[Momentum[k, D] + Momentum[p,
D], m2]] or FAD[k, m1, k + p, m2].

• The Passarino-Veltman reduction is done with
TID[integrand,loop momentum], e.g. as in
TID[GSD[k].GAD[µ].GSD[k] FAD[k, m],k], i.e. it also works with
non-trivial numerators. With the option ToPaVe -> True the command
TID expresses the result in terms of the standard notation for one-loop
integrals (A0, B0, . . . ).

• In order to substitute the known results of the standard one-loop integrals
(A0, B0, . . . ) use
PaXEvaluate[expression, PaXImplicitPrefactor -> fac]. By
choosing fac = 1/(2π)D in the option PaXImplicitPrefactor ->
fac the correct integration measure following from the Feynman rules is
used. One can also choose a different factor, for instance to get rid of
log(4π) or Euler’s constant γE in the results. Note that PaXEvaluate
is a command of FeynHelpers, which requires a working (and correctly
linkend) installation of package-X.
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Figure 4: Diagrammatic representation of the scattering of an electron with
an electromagnetic field.

The package has also more features such as calculations in the color algebra
of SU(N) etc. We omit these features since they are not relevant for this lab
course.

6 The electron anomalous magnetic moment
The anomalous magnetic moment of the electron is extracted from the scat-
tering of an electron with an electromagnetic field at zero momentum transfer
(see figure 4). The kinematic situation therefore is

qµ = pµ2 − p
µ
1 , p1 · p2 = m2 (since q2 = (p2 − p1)2 = 0) ,

q2 = 0 , /p1 u(p1, s1) = mu(p1, s1) ,

p2
1 = p2

2 = m2 , ū(p2, s2) /p2 = ū(p2, s2)m.

Using the Gordon identity

ū(p2, s2) γµ u(p1, s1) =
1

2m
ū(p2, s2) [(p1 + p2)µ + iσµν (p2 − p1)ν ]u(p1, s1)

for an on-shell Dirac-fermion of mass m, we can decompose the expression
Γµ according to the above Lorentz structures and read off the g-factor of the
electron,

ū(p2, s2) Γµ u(p1, s1) = i ū(p2, s2)

[
e

(p1 + p2)µ
2m

+ ge
e

2m

σµν
2
i qν
]
u(p1, s1) .

There is also the possibilty to use projection operators together with
Dirac traces to extract ge respectively ae = (ge − 2)/2. The procedure is
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outlined in [17] and includes the following steps. One first takes q2 6= 0 and
decomposes the amplitude according to

ū(p2, s2) Γµ u(p1, s1) = ū(p2, s2)

[
F1(t)γµ −

i

2m
F2(t)σµν∆

ν +
1

m
F3(t)∆µ

]
u(p1, s1) .

Note that reference [17] uses the additional notation ∆µ = −qµ = pµ1 − p
µ
2 ,

pµ = 1
2
(pµ1 +pµ2), and t = ∆2 = q2. One also has p2 = 1

4
(4m2−t) and p·∆ = 0.

Conservation of the electromagnetic current requires F3(t) = 0. F1(t)
is the charge form factor, F2(t) the magnetic moment form factor, and the
anomalous magnetic moment of the electron is given by

ae = (ge − 2)/2 = −iF2(0)/e .

The magnetic moment form factor F2(t) can then be extracted via [17]

F2(t) =
−2m2

(D − 2) t(t− 4m2)
×

Tr

[
( /p1 +m)

(
γµ +

4m2 + (D − 2)t

m(t− 4m2)
pµ

)
( /p2 +m)Γµ

]
.

This formula contains a factor 1/t, and therefore we can take t = q2 → 0
only at the very end of the calculation. However, it is also possible to extract
directly the anomaly F2(0). To this end the general amplitude Γµ is expanded
to first order in ∆µ:

Γµ(p,∆) ≈ Γµ(p, 0) + ∆ν
∂

∂∆ν

Γµ(p,∆)

∣∣∣∣
∆=0

≡ Vµ(p) + ∆νT
ν
µ (p) .

The formula for ae then becomes

F2(0) =
1

2(D − 1)(D − 2)m2
Tr

{
D − 2

2

[
m2γµ −Dpµ/p− (D − 1)mpµ

]
V µ

+
m

4
(/p+m)[γν , γµ](/p+m)T µν

}
.

7 Tasks for the lab course
The task for the lab course consist of two parts
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1. Renormalization of QED at the one-loop level in the pole scheme.
By considering the electron self-energy and the vacuum polarization, de-
termine the renormalization constants δZ(1)

2 , δZ(1)
m , and δZ(1)

3 in the pole
scheme (δZ(1)

1 then follows from the Ward identity). Use the Mathema-
tica package FeynCalc for your calculation. For the calculation of the
self-energy follow the strategy of [21]. It can also be helpful to have a look
in the lecture notes [22].

2. Computation of the one-loop contribution to the anomalous mag-
netic moment of the electron. Using Mathematica, write a program
that evaluates the one-loop correction to the anomalous magnetic moment
of the electron in the pole scheme. You can (but don’t have to) use the
packages FeynCalc and package-X for your calculation. Moreover, you
can choose one of the three strategies described in section 6 to perform
the calculation.
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