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Abstract

This 2-day project provides an introduction to the concept of lat-
tice quantum chromodynamics (QCD). The aim of day 1 is to deter-
mine simple gauge field observables. On day 2, we implement another,
slightly more complicated, gauge field observable and embark on deter-
mining the lattice scale

√
t0/a. The project combines different tasks

building up a typical lattice calculation on high performance super
computers:

• Implementing gauge field observables using the lattice QCD soft-
ware Qlua (based on the scripting language lua)

• Performing the numerical determination of the observables (mea-
surements) by writing and submitting job-scripts to a scheduler
(SLURM)

• Parsing the output data and performing a statistical data analysis

This project requires programming skills and familiarity with a linux
command shell. The numerical calculations will be performed on the
university’s high performance compute cluster (OMNI). The different
tasks to be accomplished and to be documented in the report are high-
lighted using the keywords Tasks and Question.

Prior to starting this project

• An account on OMNI needs to be setup

• Files relevant for this project need to be transferred
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1 Introduction

1.1 Quantum Chromodynamics

The strong interactions of quarks and gluons are described by a theory called
quantum chromodynamics (QCD). QCD is a non-Abelian quantum field the-
ory with SU(3) gauge group. Quark and gluons carry a color charge which can
take three different values. One of the characteristic features of QCD is color
confinement i.e. no isolated color charges exist in nature. When two color
sources are separated, the strong force between them grows so strongly that
a quark-antiquark pair can be generated and the two color sources split into
two (or even more) color-less bound states. These color-less bound states are
generally called hadrons. The two most common types are quark-antiquark
pairs named mesons and three quark states referred to as baryons. While
in total six different quark flavors (up, down, strange, charm, bottom, top)
are known resulting in a large zoo of particles studied experimentally, the
two lightest flavors, up and down, are the dominant constituents of ordinary
matter. Predominantly matter is made up of protons and neutrons, three
particle baryons with either two up and one down quark (proton) or one up
and two down quarks (neutron). The most common mesonic state are the
pions with the π+ composed of an up and anti-down quark (or short ud̄),
its anti-particle is the π− (dū), and further the π0, a mixture of uū and dd̄
exists.

In addition to the color charge, quarks carry an electric charge and also
have a spin which leads to a global chiral symmetry. This chiral symmetry
gets however spontaneously broken which results in hadron masses much
larger than the masses of the constituent quarks and leads to the fact that
the pseudoscalar meson (pions) are much lighter than other states of the
spectrum. In 2008 Yoichiro Nambu was awarded the Nobel Prize in Physics
for his work on spontaneous symmetry breaking in subatomic physics.

Another characteristic feature of QCD is asymptotic freedom: When the
energy scale of interactions increases (corresponding to decreasing length
scales), the strength of the interaction between quarks and gluons reduces.
For the discovery of asymptotic freedom David Gross, Frank Wilczek, and
David Politzer were awarded the Physics Nobel Prize in 1973. While for
large energies perturbative descriptions of QCD work well, we need truly
nonperturbative methods to theoretically study QCD at low energies. In the
next Section we introduce the concept of lattice field theory which provides
an ab-initio nonperturbative framework to study QCD, typically referred
to as lattice QCD. The basic idea of lattice QCD is to perform numerical
simulations based on the QCD Lagrangian and was introduced by Nobel
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laureate Kenneth G. Wilson in 1974 [1].
The QCD Lagrangian is given by

LQCD = ψ̄i(x)
(
i (γµDµ)ij −mδij

)
ψj(x)−

1

4
Ga

µν(x)G
µν
a (x), (1)

where the first term describes the fermion contribution and the second the
contribution of the gauge field. The quark field ψ(x) is a function of the
space-time x and the spinor indices i, j denote that the quark fields are given
in the fundamental representation of the SU(3) gauge group. Dµ is the gauge
covariant derivative, γµ are Dirac matrices, m the mass of the quark, and δij
is a Kronecker delta. The gauge invariant gluon field strength tensor Ga

µν is
defined by

Ga
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν , (2)

with Aa
µ(x) the gluon field as a function of the space-time in the adjoint

representation of the SU(3) gauge group carrying the color indices a, b, c. The
gauge coupling is denoted by g and fabc are structure constants of SU(3).

In general, field theoretical quantities of interest are Green’s functions. A
Green’s function is the vacuum expectation value of a time ordered product
of field operators ϕ(x⃗, t)

⟨0|ϕ(x⃗, t1)ϕ(x⃗, t2) . . . ϕ(x⃗, tn)|0⟩ with t1 > t2 > . . . > tn. (3)

Such Green’s functions can be expressed in terms of functional integrals and
calculated using the concept of Feynman path integrals i.e. we perform an
integral over all possible paths from the initial state to the final state

⟨0|ϕ(x⃗, t1)ϕ(x⃗, t2) . . . ϕ(x⃗, tn)|0⟩

=
1

Z

∫ [∏
x⃗,t

dΦ(x⃗, t)

]
Φ(x⃗, t1)Φ(x⃗, t2) . . .Φ(x⃗, tn)e

iS, (4)

where S is the action of the system and the expression is normalized by

Z =

∫ [∏
x⃗,t

dΦ(x⃗, t)

]
eiS. (5)

Since the exponents in Eqs. (4) and (5) are imaginary, the integrand oscillates
and convergence is not guaranteed. That can be remedied by performing a
simultaneous Wick rotation of all times from Minkowski to Euclidean time:
t = −iτ .
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1.2 Lattice Field Theory

After rotating the QCD Lagrangian (Eq. (1)) to Euclidean time, the path
integral formalism provides a framework to numerically calculate QCD quan-
tities like the masses of hadrons. However, before attempting any numer-
ical calculation, we need to render the problem finite by discretizing 4-
dimensional space-time using a hypercubic grid and confining the volume
to a box of finite extent. Hence we yield a lattice where neighboring points
are separated by the lattice spacing a and the coordinates xµ of the lattice
points are given by integer multiples of a:

xµ = anµ with nµ ∈ Z and µ = 0, 1, 2, 3. (6)

T/a

L/a

a

a

Figure 1: Sketch of a 2-dimensional lattice with L/a× T/a sites and lattice
spacing a.

Typically we simulate a box with equal extent in the spatial directions,
denoted by L, and a temporal direction labeled T . Considering a, L, and T
to carry units of length [fm], the total number of lattice sites is given by

V = (L/a)3 × T/a. (7)

A simple sketch (in easier to draw 2-dimensions) is shown in Fig. 1. Further
we need to specify what we do at the boundaries of the lattice and choose
to connect them periodically i.e. the 2-dimensional Grid in Fig. 1 becomes a
“doughnut” and in four dimensions we work with a (hyper-)torus.

Next we need a prescription to discretize the fermion fields ψ and the
gauge field Aa

µ. The fermion fields1 ψ live on the lattice sites xµ (black

1Here we are going to only calculate observables of the gauge fields and will therefore
skip any further details on discretizing or simulating fermion fields.
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squares in Fig. 1) and the gauge field is assigned to the links connecting two
neighboring lattice sites (black lines). We introduce the link variable of the
gauge field U and use the notation

U(x+ aµ̂, x) ≡ Ux,µ (8)

to denote a link pointing from lattice site x in µ̂ direction. This setup de-
fines the general framework of lattice field theory (LFT). For QCD the link
variables are elements of SU(3) and defined by

Ux,µ ≡ exp
{
ig0aA

c
µ(x)Tc

}
, (9)

where Ac
µ(x) is the discretized Lie algebra valued gauge filed, Tc the genera-

tors of the gauge group, and g0 the bare coupling. The smallest closed path
on the lattice is called a plaquette which is the smallest 1 × 1 Wilson loop.
The product of its four gauge links defines the plaquette variable Px,µν . (The
detailed definition is presented in Sec. 2.1.1.) By performing a sum over
all plaquettes of the gauge field U , we arrive at the definition of Wilson’s
plaquette gauge action [1]

SW = −
∑
all

plaquettes

2

g20
Re (Tr (1− Px,µν)) . (10)

When taking the naive continuum limit (a → 0), we recover the Yang-Mills
action

SW =
1

2g20

∑
x

a4F c
µνF

c
µν +O(a6). (11)

The integral over all gauge field configurations on the lattice corresponds to
an integral over all link variables Ux,µ i.e. we obtain the expectation value
for any observable A by calculating

⟨A⟩ = 1

Z

∫ [∏
x,µ

dUx,µ

]
Ae−SW , (12)

where the integration dUx,µ for a given link x, µ is to be understood as the
invariant integration over the group manifold with normalization∫

dU = 1. (13)
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Now we have introduced all ingredients to attempt a first quantum chro-
modynamics calculation on the lattice. What remains is to calculate ex-
pectation values. On a finite lattice calculating expectation values requires
to evaluate finite dimensional integrals which calls for numerical methods.
However, performing a simple numerical quadrature is not feasible: a typical
lattice with volume 323×64 has about 2.1 million lattice sites and 8.4 million
link variables which amounts for the SU(3) gauge group to 67 million real
variables.

To tackle such a problem we need Monte Carlo methods with importance
sampling i.e. for a given lattice action S we generate a set of points xi with
a probability

P (xi) ∼ exp{−S(xi)}. (14)

This allows us to better sample the important regions of the integral and
significantly improve the overall accuracy. For a lattice gauge theory we
choose configurations U (i) =

{
U

(i)
x,µ

}
to sample the integral. Calculating the

expectation value

⟨0|A|0⟩ = 1

Z

∫
DU A(U) e−S(U) (15)

is then numerically approximated by the average

Ā ≡ 1

n

n∑
i=1

A(U (i)), (16)

where the index i runs over a sequence (ensemble) of gauge field config-
urations U (i). The gauge field configurations are generated using Monte
Carlo simulations creating a Markov chain i.e. a sequence of configurations
U (1) → U (2) → U (3) → . . . according to appropriate probabilities. For this
project these configurations have already been generated and two sets of
suitable configurations are provided as binary files ready to use. Calculating
expectation values with Monte Carlo techniques further implies to perform
a statistical analysis i.e. our results carry statistical uncertainties

⟨A⟩ = Ā± δĀ, (17)

where ⟨·⟩ indicates the average over the sequence of configurations and δĀ is
the statistical error of the average derived from the variance σ2

Ā

δĀ =

√
σ2
Ā

n
. (18)
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Moreover there are systematic effects which need to be accounted for
and we need to correct for effects due to the finite volume, and remove the
discretization by taking the continuum limit. However, details on that are
beyond the scope of this project.

In addition to the plaquette (the 1× 1 Wilson loop) we will later discuss
the planar 2 × 1 rectangle as well as the so called clover operator formed
by the four plaquettes around the lattice site x in the µ-ν plane. Rectan-
gle and clover operator can e.g. be used to reduce discretization errors in
the definition of the gauge actions. With appropriately determined coeffi-
cients, this leads e.g. to the Symanzik [2, 3] or the Wilson-clover [4] gauge
actions. These actions have different discretization artifacts. Values for bare
parameters, like the gauge coupling g0 in Eq. (9), depend on the chosen
gauge action. All simulations are performed at a finite value of the lattice
spacing a and the actual value of a needs to be determined numerically. To
obtain physically meaningful results, simulations at different values of the
bare gauge coupling are combined to subsequently take the continuum limit
i.e. performing the extrapolation a → 0. By taking the continuum limit,
discretization artifacts are removed and universal results independent of the
used discretization (gauge action) are obtained.

Plaquette, rectangle and clover operators are the key quantities to de-
termine properties of the gauge field. They can be related to the energy
density and allow to determine the lattice spacing or study nonperturba-
tively the renormalization group (RG) β function. Later we also introduce
the Polyakov loop [5] which forms a closed loop of all links in one direc-
tion. Polyakov loops are frequently used as an order parameter to study the
deconfinement transition of QCD simulations at finite temperature.

Further introductions to lattice field theory and lattice QCD can e.g. be
found in

• Münster, “Lattice quantum field theory”, (2010), Scholarpedia, 5(12):8613

• Weisz and Majumdar, “Lattice gauge theories”, (2012), Scholarpedia,
7(4):8615

• Gattringer and Lang, “Quantum Chromodynamics on the Lattice”,
Springer (2010)

• Knechtli, Günther, Peardon, “Lattice Quantum Chromodynamics”, Springer
(2017)

• DeGrand and DeTar, “Lattice methods for quantum Chromodynamics”,
World Scientific (2006)
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• Montvay and Münster, “Quantum Fields on a Lattice”, Cambridge Uni-
versity Press (1994)

1.3 Workflow of a LFT calculation

A typical lattice calculation proceeds in several steps to account for the fact
that the numerical costs and the required computational resources can be
rather different.

1. Generate gauge field configurations

2. Determine observables (perform measurements)

• Implement observables to be measured

• Test and validate code

• Run measurements for an ensemble of gauge field configurations

3. Perform a statistical data analysis

4. Combine data from simulations at different choices for the simulation
parameters to obtain a result in the continuum and at physical param-
eter values free of discretization artifacts

Generating the gauge field configurations typically dominates the costs but
the same gauge field configurations can be used to measure many different
observables. Hence these gauge field configurations are saved as binary files
and then subsequently read-in to carry out different measurements. This is
exactly what we will do for this project and hence we can skip further details
on how to generate these gauge field configurations. The example below
refers to configurations [6] generated using the Symanzik gauge action with
two massless flavors in the fundamental representation. The fermions were
simulated using stout-smeared Möbius domain-wall fermions (Ls = 12, M5 =
1.0, ϱ = 0.1, Nstout = 3) and the gauge coupling is set to be β ≡ 6/g20 = 4.60.
We are thus looking at a system which has QCD-like properties. The format
of the binary gauge field is called NERSC and before the binary part 26 ASCII
lines are stored containing some information about the gauge field. Not all
predefined entries are filled. We can print the entire header information using
the head command with the option -26

head −26 ckpoint_lat .500

BEGIN_HEADER
HDR_VERSION =
DATATYPE = 4D_SU3_GAUGE_3x3
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STORAGE_FORMAT =
DIMENSION_1 = 32
DIMENSION_2 = 32
DIMENSION_3 = 32
DIMENSION_4 = 64
LINK_TRACE = −3.571047985e−05
PLAQUETTE = 0.6460529819
BOUNDARY_1 = PERIODIC
BOUNDARY_2 = PERIODIC
BOUNDARY_3 = PERIODIC
BOUNDARY_4 = PERIODIC
CHECKSUM = 8d462b98
SCIDAC_CHECKSUMA = 0
SCIDAC_CHECKSUMB = 0
ENSEMBLE_ID = UKQCD
ENSEMBLE_LABEL = DWF
SEQUENCE_NUMBER = 1
CREATOR = wi t z e l
CREATOR_HARDWARE = lq1wn056 . f n a l . gov−x86_64−Linux

−3 .10 .0 −957 .21 .3 . e l 7 . x86_64
CREATION_DATE =
ARCHIVE_DATE =
FLOATING_POINT = IEEE64BIG
END_HEADER

The focus of this project is on steps 2) and 3) and we will separately give
the details for the actually provided gauge field configurations. Specifically
we are interested in determining observables of the gauge field with the details
given in the Section 2.1. On the technical side, we utilize a lattice QCD
software package named Qlua2 [7, 8]. This package provides an interface
based on the scripting language lua to highly optimized routines written in
c/c++ which are parallelized using the message passing interface
(mpi). Luckily Qlua hides almost all of these technicalities and we can
solely focus on the physics problem we like to solve.3 At the same time we
do take advantage of running a parallel program. Thus we must always
execute the program on a compute node of the OMNI cluster. After
implementing our measurement in a Qlua script, we can either submit a
batch script (job script) to the resource manager (scheduler) of the cluster
(SLURM) or we can request from the scheduler an interactive node. The
latter may be more convenient for debugging/validating but is not suitable
for running many measurements.

Next we discuss the specific example of calculating the average trace link
2https://usqcd.lns.mit.edu/w/index.php/QLUA
3Important: There is one pitfall to be aware of: array indices in c start with 0,

whereas in lua they start with 1. This can get tricky when calling a c function from lua.
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of a gauge field configuration. Key aspects of lua’s syntax are summarized
in Appendix A and Appendix B lists the most relevant SLURM commands.

1.4 Example: Calculation of the average link trace

1.4.1 Qlua script

1 package . path = package . path . . " ; . / ? . qlua "
2 r e qu i r e " s t d l i b "
3 r e qu i r e " U t i l s "
4

5 −− main program
6 L = 32
7 T = 64
8 c on f i g=" . . /Two/ f2l32t64ls12b460m000_3stout_pppa/ ckpoint_lat .500 "
9

10 −− Star t t iming
11 t i c = os . time ( )
12

13 −− i n i t i a l i z e l a t t i c e
14 l a t t i c e , volume , rand = I n i t L a t t i c e (L ,L , L ,T)
15

16 −− load gauge f i e l d in NERSC format
17 U, GaugeInfo = LoadGaugeField ( con f i g , l a t t i c e , volume )
18

19 −− c a l c u l a t e average l i n k t r a c e
20 l t r = 0
21 f o r mu = 1 , #l a t t i c e do
22 l t r = l t r + U[mu ] : t r a c e ( ) : sum( ) : r e a l ( )
23 end
24 l t r = l t r / (U [ 1 ] : c o l o r s ( ) ∗ #l a t t i c e ∗ volume ) −− normal ize
25 d i f f = ( l t r − GaugeInfo .LINK_TRACE) / l t r −− c a l c . r e l . d i f f .
26 p r i n t f ( " l i n k t r a c e : %d %15.11 f %15.7 e\n" , volume , l t r , d i f f )
27

28 −− Fin i sh t iming
29 toc = os . time ( )
30 p r i n t f ( "Qlua f i n i s h e d . Total time : %f sec \n" , toc−t i c )

Meas.qlua

• As in line 5, comments start with two hyphens (--) and instruction do
not need to be closed with semicolon (;) as e.g. in c. You may however
use a semicolon to put two or more instruction in one line. Strings are
enclosed using double quotes ("). The hash-operator (#) returns the
number of elements of an array which in lua has an index running
from one 1 to #array
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• Line 1 specifies where Qlua searches for additional files like the file
Utils.qlua (included in line 3) which provides the routines to setup
the lattice or load a gauge field configuration. The listing of the file
Utils.qlua is shown in Appendix C

• Line 6, 7 specify spatial and temporal extent of the lattice and the
values must match the size of the gauge field specified by the filename
in line 8 and referred to by the variable config

• Line 14 calls the routine to initialize the lattice i.e. information is gen-
erated how to access e.g. the next neighbors at any lattice site x

• Line 17 loads the gauge field into the variable U and the information
from the header to GaugeInfo. Technically the gauge field U is an
array with an index running over all lattice sites x of the 4-dimensional
lattice volume. At each lattice site four link variables are stored corre-
sponding to the four space-time directions which we typically access by
an index µ or ν. Each link variable is an element of SU(3) i.e. a com-
plex 3× 3 matrix. The index for the site x is “hidden” and operations
act on the entire gauge field U. Since overloading allows to redefine the
+ operator for SU(3) color matrices, the link variables can straight for-
wardly be added without explicitly running over the elements of each
SU(3) matrix. Similarly - and * operators are redefined for SU(3) color
matrices

• The loop in lines 21-23 runs over the four space-time dimensions and
performs the parallel computation of calculating the trace of each link
variable U[mu], summing over the space-time coordinate x, and taking
the real part. By taking the trace of U[mu], we remove the color index
and instead of a matrix we have a complex number for each lattice
site. Next the :sum() operation performs a reduction over the full
4-dimensional lattice and we obtain a single complex number. Finally
:real() returns only the real part of that complex number which is
of physical relevance

• The resulting sum is normalized in line 24 where U[1]:colors()
provides the number of colors, #lattice the dimensions of the lattice
and volume the number of lattice sites

• In line 25 we calculate the relative difference to the value saved as part
of the header information of the gauge field file accessed via the variable
GaugeInfo
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• The special printf command in line 26 and 30 ensures that the output
is only written by one mpi process and the usual syntax for formatted
output can be used

1.4.2 SLURM job script

1 #!/ bin /bash
2 #SBATCH −N 1
3 #SBATCH −p debug
4 #SBATCH −−time 00 : 10 : 00
5 #SBATCH −−tasks−per−node 64
6 #SBATCH −−e x c l u s i v e
7 Sc r i p t =./Meas . qlua # name o f s c r i p t to be executed
8

9 #################################################################
10 # r ed i r e c t output and f o r c e immediate wr i t i ng
11 exec > ${SLURM_SUBMIT_DIR}/${SLURM_JOB_NAME}−${SLURM_JOB_ID} . omni

. out 2>&1
12

13 #################################################################
14 # s t a r t tak ing the time
15 echo "# time−begin " ‘ date ‘
16 TotalTic=‘date +%s ‘
17

18 #################################################################
19 # repor t in fo rmat ion on c l u s t e r
20 echo "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"
21 echo "Running Qlua on OMNI"
22 echo "SLURM job runnning on : ‘ hostname ‘ "
23 echo " in d i r e c t o r y : ‘pwd ‘ "
24 echo "SLURM job id : ${SLURM_JOB_ID}"
25 echo "SLURM #nodes : ${SLURM_NNODES}"
26 echo "SLURM #tasks /node : ${SLURM_TASKS_PER_NODE}"
27 echo " Node f i l e : ${SLURM_JOB_NODELIST}"
28 echo "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"
29

30 #################################################################
31 # load environment and s e t v a r i a b l e s f o r running Qlua
32 umask 007
33 module load i n t e l /19 . 1 . 3 . 100008_cm9. 0 _f654bdadee
34 module load impi /2020.4
35 MPIrun=" srun −−mpi=pmi2 "
36 Qlua="/home/ow907254/ Software /QLUA/omni−20201002− i n t e l 1 9 . 1 . 3

_impi2020 .4/ qlua /bin / qlua "
37

38 #################################################################
39 # pr in t s c r i p t and command to be executed to the l og f i l e
40 echo "=========================================================="
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41 echo " Sc r i p t : ${ Sc r i p t }"
42 echo "=========================================================="
43 cat ${ Sc r i p t }
44 echo "=========================================================="
45 echo "${MPIrun} −n ${SLURM_NTASKS} ${Qlua} ${ Sc r i p t }"
46 echo "=========================================================="
47 echo ""
48

49 #################################################################
50 # run Qlua in p a r a l l e l execut ing the s c r i p t
51 ${MPIrun} −n ${SLURM_NTASKS} ${Qlua} ${ Sc r i p t }
52

53 #################################################################
54 # repor t the time
55 TotalToc=‘date +%s ‘
56 echo " "
57 echo "# time−f i n i s h " ‘ date ‘
58 TotalTime=$ ( ( $TotalToc − $TotalTic ) )
59 TotalHours=‘echo "$TotalTime / 3600" | bc −l ‘
60 echo "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++"
61 echo "Total time $TotalTime [ s ec ] = $TotalHours [ h ] "
62 echo "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++"

Test.job.sh

• Only lines 3, 4, and 7 may need adjustment!

• Line 1 specifies that this script uses bash syntax i.e. comments start
with #. To assign a value to a variable, use the equal sign (=) without
any white space before or after “=”; only when referring to a value of
the variable, prefix $

• Lines 2-6 starting with #SBATCH specify the resources we request from
the scheduler. Specifically we ask for one full node for our exclusive
usage with the intention to spawn 64 mpi tasks. Line 3 names the
partition (queue) to use, in this case debug. debug has the shortest
(wall-)time limit and smallest number of nodes. debug is solely in-
tended for testing/debugging with short turnaround times. In Line 4
we say our job will finish within 10 minutes. If it runs longer, SLURM
will terminate it

• For production measurements changing line 3 to “-p short” and line 4
to (up to 2h) “--time 2:00:00” may be advised

• Line 7 names the Qlua script we want to run
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• Subsequent lines do not need adjustment. All lines starting with echo
simply print information to the log-file and the comments provide fur-
ther explanations

• sbatch Test . job . sh

submits the script and you may check the queue with
squeue −u $USER

(for further comments on SLURM commands see Appendix B)

1.4.3 Running interactively on a compute node

First we need to request an interactive node from the scheduler (single line)
srun −−pty −−e x c l u s i v e −N 1 −−time =00:30:00 −−tasks−per−node=64

−p debug /bin /bash

which specifies we want one full node of the debug partition (queue) for 30
min, using up to 64 mpi tasks, and running on it with the BASH shell. Once
we submit this request, the terminal is blocked until the resource is available.
Do check that the prompt states you are connected to a hpc-node and not
still on hpc-login. When the interactive session has started, we need to
load the software environment to run Qlua. For that execute
module load i n t e l / 19 . 1 . 3
module load impi /2020.4

and define as shortcut the alias (no space around the equal sign, one line)
a l i a s Qlua="/home/ow907254/ Software /QLUA/omni−20201002− i n t e l 1 9

. 1 . 3 _impi2020 .4/ qlua /bin / qlua "

With this setup in place we can (repeatedly) execute Qlua and run our
script
Qlua . / Meas . qlua

where we assume we are in the directory of the file Meas.qlua. The output
will only be printed on the screen (stdout). If the program hangs or is
not doing what you want, hit CTRL-C to terminate it. By just executing
Qlua the code will be slow and only run on one processor. That option
typically gives you the most useful error messages when seeking a bug which
terminates the script. To run on more processors (up to 64 on a single node)
prefix mpirun -n followed by the number of tasks (1, 2, 4, 8, 16, 32, or 64)
and then run your script i.e.
mpirun −n 64 Qlua . / Meas . qlua

Each time you start a new interactive session, the specified modules must be
loaded and the Qlua variable defined to use the shortcut.
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2 Gauge field observables (day 2)

2.1 Implement gauge field observables

2.1.1 Plaquette (1× 1 Wilson Loop)

The smallest closed path on the lattice is called a plaquette (see Fig. 2)
which defines the plaquette variable Px,µν at a lattice site x in the µ-ν plane

Px,µν ≡ Ux,µU(x+aµ̂),νU
†
(x+ν̂),µU

†
x,ν . (19)

As indicated by the directions of µ and ν in the lower left corner of Fig. 2, the
gauge links are oriented in the forward/upward direction. However, to close
the loop at least one link needs to be included which runs in the opposite
direction. In such cases we need the adjoint link indicated by †.

<

>

>

<

■ ■

■ ■

x x+ aµ̂

x+ aν̂

→ µ↑
ν

Figure 2: Sketch of plaquette at lattice site x in directions µ and ν. The
colors of the link match the terms of the r.h.s. in Eq. (19).

Tasks: Calculate the average plaquette for a given gauge field configura-
tion taking the trace over the color indices and summing over all plaquettes
i.e. calculate

P =
∑
all

plaquettes

Tr{Px,µν}. (20)

Only the real part has a physical meaning and the resulting value should be
normalized such that the value of the average plaquette can take values from
0 to 1. Quote the following values:

• “world” (average of plaquettes in all four directions)

• “space-like” (plaquettes with space-like directions only)

15



• “time-like” (plaquettes along the temporal direction)

Question: Why is it mathematically irrelevant where you start calculating
the plaquette or in which direction you go around the links?
Hints:

• To get the adjoint link U †
x,µ, use the syntax

U[mu ] : ad jo in ( )

• Accessing the link from a next neighbor relative to the site x is done
using the syntax

U[ nu ] : s h i f t (mu, " from_forward" )

In this example, we grab the link for the direction ν at the site x+ aµ̂
i.e. moving from x one step forward in the direction of µ. When
using µ for a shift, the index runs from 0 to 3, whereas when
accessing the elements of U[mu] it runs from 1 to 4. In the first
case the index acts using a function written in c, while in the latter
case the index operates on a field defined in lua

• To validate your code for the “world” plaquette of a given gauge field
configuration, you may cross-check the value you calculated against
the one recorded as part of the header information of the file you are
reading

• When looping over all four space-time directions consider that each pla-
quette is a 2-dimensional quantity (potential issue of “double-counting”)

• To sort out the normalization, you may calculate the average of a unit
gauge field which you can create by using

r e qu i r e "gauge" −− to be added at the top
U = {}
f o r i = 0 , #l a t t i c e − 1 do

U[ i +1] = toSUn( l a t t i c e : ColorMatrix ( complex (1 , 0 ) ) )
end

• To get average space-like and time-like plaquettes right, consider a
small 4-dimensional lattice and count how many plaquettes in space-
like and time-like directions exist. What do you expect to obtain for
the sum of space-like and time-like plaquettes?
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2.1.2 Rectangle (2× 1 Wilson Loop)

The planar 2 × 1 and 1 × 2 rectangles (see Fig. 3) are the next larger and
similarly simple Wilson Loops after the plaquette.

Tasks: Write down mathematical equations defining the 2 × 1 and 1 × 2
rectangle R2×1

x,µν and R1×2
x,µν , respectively. Implement both rectangles choosing

<

> >

< <

>

■ ■ ■

■ ■ ■

x x+ aµ̂ x+ 2aµ̂

x+ aν̂ x+ aµ̂+ aν̂

→ µ↑
ν

Figure 3: Sketch of the 2× 1 rectangle in directions µ and ν.

a normalization consistent with the one for the plaquette. Calculate the
average values R2×1 =

∑
all

rectangles
Tr{R2×1

x,µν} and R1×2 =
∑

all
rectangles

Tr{R1×2
x,µν}

for a given gauge field configuration again quoting values for

• “world” (average of rectangles in all four directions)

• “space-like” (rectangles with space-like directions only)

• “time-like” (rectangles along the temporal direction)

Question: Without double counting, how many 2× 1 and 1× 2 rectangles
exist? Does the answer depend on the number of space-time dimensions?
How do their numbers compare to the number of plaquettes?

2.1.3 Testing gauge invariance

Plaquette, rectangle, clover operator, and Polyakov loops are all gauge invari-
ant quantities — in contrast to e.g. the average link trace used as introductory
example in Sec. 1.4. Hence we can perform certain symmetry transforma-
tions on the gauge field without changing the values of such gauge invariant
quantities.

A simple (trivial) transformation is to shift the origin of the lattice by
a 4-vector. This can be done using the function translat where the shift
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is specified by the variable xvec. To test translational invariance, add the
following two lines

xvec = {13 ,9 ,4 ,37}
U = t r a n s l a t (U, xvec )

right after loading the gauge field and before doing any calculation.
Questions: Can you confirm that this does not change the results? Next
apply a non-trivial gauge transformation by multiplying an SU(3) matrix to
the gauge field U using the function gauge_transform_U

l o c a l g = l a t t i c e : ColorMatrix ( 1 . 0 )
g = g : pro j (1 e −8 ,150)
U = gauge_transform_U (g , U)

and check how that changes the values of the observables.

2.1.4 Polyakov Loop

Exploiting the periodic boundary conditions of the gauge field, we can define
the Wilson loop with the largest extent in one direction. In the temporal
direction this quantity is also referred to as the thermal Wilson line. Con-
sidering this largest loop in all four space-time directions, we generally refer
to it as Polyakov loop i.e. we are interested in the quantity

Plµ = Tr

{
Lµ−1∏
k=0

Uµ

}
with Lµ = (L,L, L, T ). (21)

Tasks: Implement and print both the real and the imaginary part of the
average Polyakov loop for all four space-time directions. For simulations in
the confined phase the expectation value ⟨Plµ⟩ is expected to be zero, whereas
it is nonzero for simulations in the deconfined phase.

2.2 Run measurements

Please do not call the translat or gauge_transform_U function
for the so called production run.

Modify the SLURM job script and the Qlua measurement script to loop
over several configurations within one job. Take care of organizing the output
such that you can “easily” and robustly extract the measurement values from
log-files written to stdout.
Tasks: Please include a description of how you organized the output and
post-processing in your report.

Hint:
Powerful and maybe useful command line tools are grep and awk.
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2.3 Statistical data analysis

Perform a statistical data analysis for the plaquette and rectangle observ-
ables.
Tasks:

• Create history plots of the quantities vs. the Monte Carlo time (con-
figuration number)

• Show a histogram for these observables and obtain mean values with
their statistical errors

• Try to estimate effects of autocorrelation by binning subsequent mea-
surements

• A statistical analysis for the Polyakov loops is likely not suitable. Here
however it is interesting to make a scatter plot showing the real part on
the horizontal and the imaginary part on the vertical axis overlaying the
four different directions using different colors/symbols. Can you decide
whether the provided configurations are in the confined or deconfined
phase of QCD?

• Please make sure to report results for both data sets provided
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3 Gradient flow scale setting (day 2)
Before we move on and use the previously implmented gauge field observables
to determine the gradient flow (GF) scale

√
t0/a, we first discuss implement-

ing another observable, the clover operator Cµν(x). Subsequently, we discuss
the gradient flow and describe how to determine the lattice scale from it.

3.1 Implement the clover operator

<

>

<

>>

>

<

<

>

>

<

< <

>

<

>

■ ■

■ ■

■ ■■

■

■

xx− aµ̂ x+ aµ̂

x+ aν̂

x− aν̂
→ µ↑
ν

Figure 4: Sketch of clover operator for lattice site x in the µ-ν plane.

Figure 4 shows a sketch for the Sheikholeslami-Wohlert or clover operator
at lattice site x which is given by the sum of the four different plaquettes at
lattice point x in the µ-ν plane. The anti-Hermitian and traceless part of the
average clover operator Cµν(x) can be used to obtain a lattice definition of
the field strength tensor Gµν(x). Calculating Gµν(x) on the entire lattice,4

4Note, that calculating Gµν(x) for all x in the µ-ν plane requires to take all loops with
the same orientation.
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we can define the energy density E

E =
1

4
Ga

µνG
a
µν , (22)

which is proportional to the gauge coupling g2.
Tasks:

• First write down the corresponding mathematical expression to deter-
mine the clover operator Cµν(x) in terms of the link variables Ux,µ. How
many “hops” to neighbors of x do you need to get all links? (Fewer hops
is better.)

• The anti-Hermitian and traceless part of Cµν(x) defines the lattice field
strength tensor Gµν(x) which we use to calculate the energy density E.
Detail how you plan to obtain E from Cµν(x).

• Implement the above described energy density E to determine the aver-
age for a given gauge field configuration. (Just determining the “world”
energy density is sufficient.)

3.2 Determine the lattice spacing a

For simulations in the confining phase of QCD we can determine the lattice
spacing a. One option is to use a gradient flow method [9, 10]

d

dτ
Bµ(x, τ) = −∂SYM(B)

∂Bµ(x, τ)
with Bµ(x, τ)

∣∣∣∣
τ=0

= Aµ(x). (23)

In Eq. (23) we introduce a new parameter, the flow time τ which has mass
dimensions [-2]. Further we define the Lie Algebra valued field Bµ(x, τ) which
compared to the gluon field Aµ has an additional dependence on the flow time
τ . By numerically integrating Eq. (23) for some specific Yang-Mills gauge
action SYM and using the “unflown” gluon field Aµ as initial value, each gauge
field configuration U (i) is expanded into a sequence of gauge fields V (i)

τ along
the flow time τ . The gradient flow acts thereby as a smoothing procedure
gradually removing UV fluctuations. By measuring a quantity related to the
energy density E, we can then study its flow time dependence and deduce a
lattice scale [11]. Practically we calculate for each flow time τ the expectation
value ⟨E(τ)⟩ over the sequence of gauge field configuration. By forming the
dimensionless product τ 2⟨E(τ)⟩ we obtain a quantity which is proportional
to the gauge coupling

g2GF (τ ;L, β) =
128π2

3(N2
c − 1)

⟨τ 2E(τ)⟩. (24)
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(τ/a)2

τ
2
⟨E

(τ
)⟩

0.3

t0/a
2

Figure 5: Sketch showing the determination of the Wilson flow scale
√
t0/a

using τ 2⟨E(τ)⟩.

The constants in Eq. (24) are chosen to match for Nc = 3 the perturbative
1-loop result in the MS scheme [11]. The flow time τ for which τ 2⟨E(τ)⟩
reaches a specific value finally defines our lattice scale.

In practice we use SYM = SW , the Wilson gauge action, and measure the
energy density using the plaquette or the clover operator. The Wilson flow
scale

√
t0/a is defined by [11]{

τ 2⟨E(τ)⟩
}
τ=t0

= 0.3, (25)

and we show a sketch of the t0 determination using τ 2⟨E(τ)⟩ data in Fig. 5.
While we draw a continuous line for τ 2⟨E(τ)⟩ as a function of the flow time
τ , the flow time τ is necessarily a discrete variable incremented in steps of ε.
Choosing 0.01 ≤ ε ≤ 0.04 is appropriate for this project.

√
t0/a is a lattice

scale i.e. it is given in lattice units a. We can convert it to a physical length
scale [fm] by using its continuum limit value determined e.g. in [12]

√
t0 = 0.1528 fm. (26)

To use the Wilson flow implementation in Qlua add the following defi-
nitions to the top
r e qu i r e "gauge"
r e qu i r e " qcd l i b / gradient−f l ow "

−− Flow parameters
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eps = 0.04
f_steps = L∗L/64/ eps ;
−− Action parameters f o r Wilson
act_params = { plaq1 = 3 .0 }
−− bu i ld f o r c e and ac t i on func t i on s from act i on parameters
g_force = qcdLib . GaugeLoops . f low_force ( act_params )

and then run a loop
V = U
fo r i = 1 , f_steps do

V = qcdLib . GradientFlow . f low ( g_force , V, eps )
monitor_flow ( i , eps , i ∗ eps , V)

end

where you need to provide the function monitor_flow. The indicated
arguments name the integer step i, the step-size ε, the flow time τ = i · ε, as
well as the “flown” gauge field V .
Question: Why is it important to calculate for a given µ-ν plane all pla-
quettes of the clover operator using the same orientation?
Tasks:

• Validate you determination of the energy density using the clover op-
erator with your supervisor without using gradient flow.

• Implement the function monitor_flow to perform the measurements
of the gauge field observables on the gauge field V and print the result
together with the integer step number i as well as the flow time τ = i·ε.

• Test your implementation on one gauge field configuration and check
that the walltime-limit is sufficient to complete the measurements.

• Run your gradient flow measurements for all gauge field configurations.

• The analysis proceeds as before by calculating the mean of τ 2⟨E(τ)⟩
and its error to create a plot showing τ 2⟨E(τ)⟩ vs. τ/a2 (standard
statistical error analysis).

• By finding the value of τ 2⟨E(τ)⟩ = 0.3, you can read off t0/a
2 and

deduce the Wilson flow scale
√
t0/a (see sketch in Fig. 23). Explain

how you obtain the statistical error on
√
t0/a?

• The determination of ⟨E(τ)⟩ can be done using different operators to
estimate the energy density. Compare how the results differ when using
the plaquette compared to the clover operator.

• Use the provided reference value (Eq. (23)) to convert the lattice scale
into physical units [fm].
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A lua

• Comments
−−s i n g l e l i n e comment
−−[[

multi−l i n e comment
] ]

• Variables
Variables do not require a type definition and values are assigned using
the equal sign (=). Similarly standard arithmetic operations +, -,

*, / are defined. To concatenate strings use two dots (..)
l o c a l s t r i n g = "part1 " . . " part2 "

The scope of a variable can be explicitly limited by first declaring it
with local. Also the standard relational operations are available:
equal (==), not equal (∼=), greater (>), greater equal (>=), less
equal (<=), less (<) complemented by the logical operators and, or,
not

• Loops
whi le <cond i t i on> do
end

f o r i = s ta r t , end , s tep do
−− i f s t ep i s omitted , s tep=1 i s used

end

f o r k , v in pa i r s ( tab ) do
end

repeat
un t i l <cond i t i on>

• Conditions
i f <cond i t i on> then

p r i n t f ( " yes " )
e l s e i f <cond i t i on> then

p r i n t f ( "maybe" )
e l s e

p r i n t f ( "no" )
end
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• Functions
f unc t i on myFunction ( )

re turn 1
end

func t i on myFunction (a , b)
re turn a + b

end

B SLURM

The ZIMT website https://cluster.uni-siegen.de/omni/usage/
slurm/?lang=en has a detailed list of the various SLURM commands. Most
relevant are properly:

• sinfo with option -ls reports a compact overview of the resources
and the defined partitions (queues), whether the partition is available
and what its maximal (wall-)time limit is as well as the number of
nodes in the different states. A: allocated, I: idle, O: other (not
available), and T: total. As can be seen in the last column, nodes can
be assigned to more than one partition. Qlua is compiled for running
on hpc-nodes only.
s i n f o − l s
Sun Jul 11 11 : 03 : 15 2021
PARTITION AVAIL TIMELIMIT NODES(A/ I /O/T) NODELIST
debug up 1 : 0 0 : 0 0 0/5/0/5 hpc−node [001 −005]
gpu up 1 −00:00:00 1/9/0/10 gpu−node [001 −010]
htc up 1 −00:00:00 0/41/0/41 htc−node [001 −041]
long up 20 −00:00:0 85/4/8/97 hpc−node [338 −434]
medium up 1 −00:00:00 385/16/28/429 hpc−node [006 −434]
shor t ∗ up 2 : 0 0 : 0 0 232/12/12/256 hpc−node [006 −261]
smp up 1 −00:00:00 0/2/0/2 smp−node [001 −002]

• sbatch submits a job-script. Options can be provided on the com-
mand line or using #SBATCH instructions as discussed for lines 1-6 of
the run script in Sec. 1.4.2

• squeue reports all jobs the scheduler is currently managing. To get a
list of only your jobs use

squeue −u $USER

where the environment variable $USER is by default equal to your
username on OMNI
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C Utils.qlua

1 f unc t i on I n i t L a t t i c e (X,Y, Z ,T)
2 −− i n i t i a l i z e s l a t t i c e and random s t a t e
3 l o c a l l a t = qcd . l a t t i c e {X,Y, Z ,T}
4 l o c a l vo l = 1
5 l o c a l i
6 f o r i = 0 , #l a t − 1 do
7 vo l = vo l ∗ l a t [ i ]
8 end
9 −− I n i t i a l i z e the random s t a t e from the system source

10 l o c a l r = { }
11 l o c a l rand
12 do
13 r . x = os . random ( )
14 l o c a l x = l a t : Int ( r . x )
15 f o r i = 0 , #l a t − 1 do
16 r [ i +1] = os . random ( )
17 x = x ∗ l a t [ i ] + l a t : pcoord ( i ) ∗ r [ i +1]
18 end
19 r . f = os . random ( )
20 p r i n t f ( " I n i t i a l i z i n g random s t a t e \n" )
21 rand = l a t : RandomState ( r . f , x )
22 end
23 re turn la t , vol , rand
24 end
25

26 −− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
27 f unc t i on LoadGaugeField ( fname , l a t , volume )
28 l o c a l U
29 l o c a l i n f o
30

31 U, i n f o = qcd . ner sc . read_gauge ( la t , fname ,
32 { un i t a r i t y =1.23e−7, FLOATING_POINT="IEEE64BIG"})
33

34 p r i n t f ( "\n\nHEADER of %s \n" , fname )
35 l o c a l i
36 l o c a l v
37 f o r i , v in pa i r s ( i n f o ) do
38 i f i == ’CHECKSUM’ then
39 v = s t r i n g . format ( "%x" , v )
40 v = s t r i n g . sub (v , 9 , −1)
41 p r i n t f ( " %−20s [ number ] %s \n" , t o s t r i n g ( i ) , v )
42 e l s e
43 p r i n t f ( " %−20s [%s ] %s \n" , t o s t r i n g ( i ) , type (v ) ,
44 t o s t r i n g (v ) )
45 end
46 end
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47 p r i n t f ( "\n" )
48 re turn U, i n f o
49 end
50

51 −− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
52 f unc t i on t r a n s l a t ( Utrans , xvec )
53 l o c a l tmp = {}
54 l o c a l n , d i r , length , j
55 p r i n t f ( " s h i f t l a t t i c e by vec to r [ " )
56 f o r n = 0 , #Utrans−1 do
57 d i r = n
58 l ength = xvec [ d i r +1]
59 p r i n t f ( "%d " , l ength )
60 i f l ength > 0 then
61 f o r mu = 1 , #Utrans do
62 f o r j = 1 , l ength do
63 tmp [mu] = Utrans [mu ] : s h i f t ( d i r , " from_forward" )
64 Utrans [mu] = tmp [mu]
65 end
66 end
67 end
68 end
69 p r i n t f ( " ] \ n" )
70 re turn Utrans
71 end

Utils.qlua
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