Multimessenger Astronomy of Transient Point Sources at the Pierre Auger Observatory

Philip Ruehl on behalf of the Pierre Auger Collaboration

31st Texas Symposium on Relativistic Astrophysics

15.09.2022

The Pierre Auger Observatory

The Pierre Auger Observatory

- World's largest cosmic-ray observatory (~ 3000 km²) for ultra-high-energy cosmic rays (UHECR).
- Located in the western part of Argentina, close to the city of Malargüe.
- Detector plane at $\sim 1400\,\mathrm{m}$ a.s.l., at the foot of the Andes mountains.

The Pierre Auger Observatory

- Surface Detector (SD):
 - ▶ 1660 water Cherenkov detectors with spacing of 1.5 km (3000 km²).
 - Measure secondary particles of extensive air showers (EAS).
 - Duty cycle \sim 100%.

- Fluorescence Detector (FD):
 - ▶ 27 fluorescence teleskopes at 4 sites.
 - Measure nitrogen fluorescence light, caused by EAS.
 - ▶ Duty cycle \sim 15%.

Pierre Auger Observatorium

• Surface Detector (SD):

- 1660 water Cherenkov detectors with spacing of 1.5 km (3000 km²).
- Measure secondary particles of extensive air showers (EAS).
- Duty cycle \sim 100%.

Fluorescence Detector (FD):

- ► 27 fluorescence teleskopes at 4 sites.
- Measure nitrogen fluorescence light, caused by EAS.
- ▶ Duty cycle \sim 15%.

The Surface Detector (SD)

- Electromagnetic (EM) particles and muons penetrate the hull of an SD station.
- Cherenkov radiation in water is diffusely reflected by the inner layers.
- PMTs measure Cherenkov light as a function of time \rightarrow signal traces.
- Energy correlates with total signal in the SD stations.
- Directional reconstruction through timing information.

Multimessenger Astronomy with UHECR?

- Observatory was designed to measure cosmic rays.
- Cosmic rays at UHE consists primarily of charged nuclei.
- charged particles are not suited to analyze distant transients:

- Charged particles may be delayed by days, years or even centuries (for D_L = 1 Mpc).
- Typical gravitational wave (GW) sources at distances of some 100 Mpc

Search for UHE neutrinos and photons from transient sources

Field of View of the SD

Photons (30°... 60°):

EAS develop deeper in the atmosphere than for hadrons \rightarrow best sensitivity at $\theta = 30^{\circ} \dots 60^{\circ}$.

ν - "Down going low" (DGL) (60°... 75°):

 ν of all flavors interact via Charged Current (CC) or Neutral Current (NC) interactions.

 ν - "Down going high" (DGH) (75°... 90°): like DGH, but with a better background suppression.

ν - "Earth skimming" (ES) (90°... 95°):

 ν_τ interact via CC in the Earth's crust and produce an upward going EAS.

Search for UHE Neutrinos from Compact Binary Mergers (CBMs)

Identification of Primary Neutrinos

Discrimination between ν and hadronic particles:

• EM component dies out early in the atmosphere for inclined showers.

- Only muons reach the surface
 ⇒ short peak in the singal traces.
- ν-shower may expose a fully developed EM component in the detector plane.

Neutrino follow-up after GW170817 (binary neutron star merger, BNS)

- Neutrino follow-up search with the Auger SD.
- Complements ANTARES and IceCube at $E > 10^{18} \, {\rm eV}$.
- No ν candidates \Rightarrow upper limits on the ν fluence.
- ν candidates at Auger would have been highly significant: source exactly within the ES-channel!

[Antares, IceCube, Auger, 2017]

Limits on UHE ν s from BBH mergers

- Stacking analysis to constrain the source class of BBH mergers.
- Results mainly depend on the sensitivity of the ES channel (highest A).
- Limits on ν -luminosity as a function of time.
- strongest constraints currently at \sim 22 h after the GW.

8/13

Philip Ruehl

Search for UHE Photons from CBMs

Identification of Primary Photons with the SD

Photon-induced showers: (typically) deeper and less muons.

SD observables for photon-identification:

lateral distribution function (L_{LDF}) :

- EM particles closer to the shower axis than hadrons.
- Photon-induced showers have a steeper LDF.

Signal Risetime (Δ):

- Initial muon peak followed by a smeared-out EM trace.
- Large signal risetime for primary photons.

GW Event Selection for the Follow-up Photon Search

- Identification of primary photons more difficult than for neutrinos ⇒ more background
- Introduce GW event selection strategy to reduce rate of false-positive detections.
- Focus on close and/or well-localized sources:
 - ► interactions with CMB ⇒ "photon horizon" (class 1).
 - ► very close sources (≤ 40 Mpc) may allow for strong constraints on the source luminosity (class 2).
 - channel for discovery of new physics (e.g. photon-axion mixing): well localized, but distant sources (class 3).
 - cuts on the maximum localization region help maintaining a high sensitivity towards a signal.

- 4 sources pass the event selection and are oberved by the SD:
 - 1 BNS merger
 - 2 BBH mergers
 - 1 BH-NS merger candidate

[Auger, 2021]

Upper Limits on Photons from CBMs (preliminary)

- No coincident photons could be identified.
 - \Rightarrow Upper limits on the photon spectral fluence during a 1 d time window.

Follow-up Analysis of the IceCube neutrino observations from TXS 0506+056

The blazar TXS 0506+056

- TXS 0506+056: anomalous blazar, formerly classified as BL LAC type.
- Redshift $z \approx 0.34$ ($\doteq 1.8 \, {\rm Gpc}$).
- Radio measurements expose extremely curved jet pointing towards earth.
- BBH system with colliding jets?

[[]Auger, 2020 (mod.)]

- IceCube: evidence for high energy ν -production in 2014/2015 (3.5 σ) and 2017 (3 σ).
- No neutrino or photon candidates found by the Pierre Auger Collaboration.
- Limits on photon flux about one order of magnitude lower than extrapolated ν-flux.

Summary

- The Pierre Auger Observatory extends the global multimessenger campaign into the UHE regime.
- Follow-up searches for UHE neutrinos and photons from astrophysical transients have been established.
- first analyses of GW sources and the blazar TXS 0506+056 did now show coincident neutrino- or photon-like signals.
- Stacking of BBH mergers will further improve the limits on the neutrino production of this source class.
- A dedicated GW event selection for the follow-up photon search provides a high sensitivity and opens a window for the discovery of new physics.

Backup

Impact of the Hadronic Background

- Photons cannot be discriminated unambiguously from the hadronic background.
- On average 1 background event per year passes the photon candidate cut.
- The significance of a discovery decreases with the expected amount of background:

14/13

Reduction of the Background Rate

- Possibility to reduce the background: observing small regions on the sky.
- Best choice for a localization contour?
 - \rightarrow Look at the size of the contour Ω_{CL} as a function of its confidence level CL:

Example GW150914:

• Contour size at CL= 0.9 about 4-6 times as large as at CL= 0.5

Averaged over all GW events:

- At CL= 0.5, the relative variation of the contour size is ≈ 2× the relative variation of the CL (compared with 6× at CL= 0.9).
- \Rightarrow 50% contour as a compromise between expected background and confidence in source coverage.

15/13

Convolution of Directional Uncertainties

- Auger SD has a limited directional resolution.
- Average resolution for photons above 10 EeV about 1°.
- Ansatz-distributino function of the directional uncertainty: Kent-distribution $K(\psi)$ (\triangleq 2-dim Gauß-distribution on the sphere).
- Search window: 50% contour of the convolved skyr

$$P(lpha,\delta) = \iint\limits_{0}^{4\pi} \mathrm{d}\Omega' P'(lpha',\delta') \mathcal{K}(\psi)$$

Entries (normalized

q68 **q**90

1.5

2 2.5

3

 \Rightarrow Convolution inflates contour typically about 20-30%.

Selected GW sources

- 5 GW source pass the selection criteria
- 4 GW sources are within the field of view of the SD
- Selected GW sources:

Philip Ruehl

UHE Photons in the Extragalactic Medium

- Interactinos between UHE photons and
 - photons of the CMB (2,7 K, 1.9 mm, dominant up to ~ 110^{19.8} eV).
 - ▶ photons of universal radio background (dominant starting with ~ 10²⁰ eV).

⇒ Mean free path of UHE photons limited to a few Mpc.

Limits on UHE $\nu {\rm s}$ from the Source Class of BBH mergers

We have:

- Many individual limits on BBH mergers until the end of O3 (March 2020).
- A continuously growing set of GW detections.
- Presumably identical oder at least similar sources. (?)

 \Rightarrow Statistical combination to improve upper limits ("stacking"). Upper limits on ν -luminosity:

$$L_{i}^{UL} = \frac{2.44}{86400 \,\mathrm{s}} \left(\sum_{s} \frac{\sum_{\rho} P_{\rho,s} \mathcal{A}_{\rho,s,i}}{d_{s}^{2}} \right)^{-1}$$

With the probability $P_{p,s}$ of a source s to be located within pixel p of the skymap and the specrum-weighted effective aperture $\mathcal{A} = \int_0^\infty E_{\nu}^{-2} A_{eff}(E_{\nu}, \theta, t) dE_{\nu}$ for a zenith angle θ and within the time bin *i*.

Identification of Primary Photonen with the SD

- Projection of the observable space onto the common principal component to reduce dimensionality.
- Events beyond the red line: "photon candidates"
- \Rightarrow Relative background rate: $\approx 1/4000...1/3000$

- Energy and zenith angle-normalized observables gL_{LDF} and $g\Delta$.
- Complementary information for the discrimination between primary photons and hadrons.

