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1 Introduction

Man has started to observe the sky and the constellation of stars from the
very beginning of his evolution, trying to get a systematic coherence into the
structures of the universe.

With the invention of the first optical telescope by Johannes Kepler in
1608, the possible distances of observation were suddenly expanded. This
unrevealed many details of planetary movement and heralded the beginning
of modern astronomy.

During the last century, the observable range of wavelengths has been ex-
panded rapidly; towards microwaves and radio signals as well as into the
X-ray and gamma ray spectrum.

But only a small fraction of the matter existing in the universe is believed to
be luminous. The hypothetic existance of dark matter will only be able to
be detected by very rare decays, emitting only single photons or neutrinos of
highest energy.
Besides, light is not deflected by magnetic fields. The measurement of intra-
and extragalactic magnetic fields can only be performed by detecting the
arrival of charged particles. The investigation of the chemical composi-
tion of particles expelled by active galactic nuclei or supernovae necessitates
hadronic particles emitted by these objects.

The measurement of high and ultra-high energetic cosmic rays is a relatively
young field of research. As the differential flux of cosmic particles is strongly
downsizing with energy, experiments of steadily increasing dimensions have
been necessary to extend the upper limit of observable energies. That is
the reason why cosmic rays of highest energies cannot be measured directly,
they have to be detected indirectly via their fragments they produce when
traversing the atmosphere of the Earth down to the ground level.
A limited number of ground detector stations has to suffice to reconstruct the
energy of the primary particle, exploiting the atmosphere as native detector
volume.

Therefore, the determination of signal fluctuations of ground detector sta-
tions is important to improve the estimation of the energy spectrum of cosmic
rays.
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1.1 Topics of this thesis

In this thesis, signal fluctuations of the surface detector (SD) array of the
Pierre Auger Observatory (PAO) will be examined using pair tanks, i.e.
ground detector stations that are located at nearly the same position.

The thesis has five main parts of analysis:

• Studying the consistence of signal strength induced signal fluctuations
with real data

• Modelization of a fluctuation model with additional zenith angle de-
pendence

• Proposal of a preliminary model of signal fluctuations depending on
the distance to the shower axis

• Cross-checking of models

• Estimation of the impact of signal fluctuations on primary energy re-
construction

The main objective of the thesis is to confirm and/or improve formerly pub-
lished results regarding signal fluctuation analysis and, as far as possible,
to propose theoretical models that predict the results of the analysis and to
check if the possible sources of signal fluctuations are physically well under-
stood and consistent.

The methods of analysis described in my thesis may differ from those of the
originally performed publications, but will lead to similar results. The main
progresses of this thesis compared to existing publications are

• Theoretical prediction and analytical description of the trigger thresh-
old effect

• Theoretical model of signal fluctuations caused by the LDF effect

• Repetition of already performed analyses with an increased amount of
statistics

• Confirmation and improvement of existing parameterizations and mod-
els

The analyses and all plots have been generated by the commonly used analy-
sis software package ROOT (http://root.cern.ch) together with the usage
of C++. Fits were performed using the MIGRAD technology implemented
in ROOT.
The experimental data has been processed by the Auger Offline framework
of version v2r4p1.
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Part I

Theory

2 Extensive Air Showers (EAS)

All radiative objects in the universe (Sun, AGNs1, SNs2 and many more)
are emitting relativistic particles. Their energy range is varying over mag-
nitudes, from several keV up to approx. 1021 eV, depending on the kind of
acceleration and source they are coming from.

In 1912, Viktor Hess flew in a balloon to altitudes up to 5 km and discov-
ered that the ionization of the air strongly increases with height. Up to that
time, the only source of radiation was believed to be radioactivity aroused
from substances in the Earth’s crust [1, p4]. Hess noted in the conclusion
of a publication [2]:

Da der Emanationsgehalt der Luft in mehr als 1000 m Höhe
doch wohl im Mittel nicht größer sein kann als an der Erdoberfläche,
so ist zu schließen, daß die RaC-Teilchen der Luft nur etwa 1/20
der in der Höhe von 1000-2000 m herrschenden durchdringenden
Strahlung erzeugen [...] Alle diese Tatsachen deuten darauf hin,
daß ein sehr großer Teil der durchdringenden Strahlung nicht von
den bekannten radioaktiven Substanzen in der Erde und der At-
mosphäre herrührt.

The only logical conclusion for him was that the increasing ionization had to
stem from charged particles penetrating the atmosphere from outer space,
so-called cosmic rays. For the discovery of cosmic rays, Hess received (to-
gether with C. D. Anderson) the Nobel Prize in 1936 [3].

In 1939, Pierre Auger measured cosmic rays the first time on ground level
at two different places simultaneously, using two distant Wilson cloud cham-
bers, once at the Jungfraujoch (elevation 3500 m) and once at Pic du Midi
(elevation 2900 m) [4].

Cosmic radiation is distinguished in primary cosmic radiation and secondary

cosmic radiation. Secondary cosmic radiation is just emerged by interactions
of primary cosmic radiation with the atmosphere (see next section).

1Active galactic nuclei (AGNs) are high energetic areas around a black hole in the
center of galaxies.

2Supernovae (SNs) are the luminous remnants of an exploded star of a mass high
enough to collapse to a neutron star.
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Primary cosmic radiation consists of 98% of nuclei and 2% of electrons
whereas the nuclei are split into 87% of protons, 12% of α-particles and
1% of heavier nuclei [5, p231].

2.1 Interactions of primaries with the atmosphere

When nuclei of the primary cosmic radiation intrude the Earth’s atmosphere,
they will begin to interact with nuclei of the atmosphere via the strong inter-
action. In the first interaction levels, mainly hadrons will be produced as sec-
ondary particles. In inelastic p−p, p−α and α−p collisions, mainly charged
and neutral pions are generated (a and b are integer numbers) [6, p114]:

p + p → p + p + a(π+ + π−) + bπ0 , (1)

p + p → p + n + π+ + a(π+ + π−) + bπ0 , (2)

p + p → n + n + 2π+ + a(π+ + π−) + bπ0 , (3)

p + α → p + α + a(π+ + π−) + bπ0 , (4)

p + α → p + n + He3 + a(π+ + π−) + bπ0 , (5)

p + α → p + p + n + H2 + a(π+ + π−) + bπ0 , (6)

p + α → 4p + n + π− + a(π+ + π−) + bπ0 , (7)

p + α → 3p + 2n + a(π+ + π−) + bπ0 , (8)

p + α → 2p + 3n + a(π+ + π−) + bπ0 and (9)

p + α → p + 4n + 2π+ + a(π+ + π−) + bπ0 . (10)

Charged pions decay mostly by

π+ → µ+ + νµ and (11)

π− → µ− + ν̄µ . (12)

with a mean lifetime of τπ± = (2.6033 ± 0.0005) · 10−8 s. The neutral pions
immediately decay into photons (branching ratio Γγγ/Γ = (98.798±0.032)%
[7]):

π0 → γ + γ , (13)

with τπ0 = (8.4 ± 0.6) · 10−17 s [7]. The secondary muons decay via the
processes

µ+ → e+ + νe + ν̄µ and (14)

µ− → e− + ν̄e + νµ . (15)
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e+/e− pairs annihilate via the electromagnetic interaction into a photon pair,
the same process may occur in the reverse direction, i.e.

e+ + e− → γ + γ or (16)

γ + γ → e+ + e− . (17)

Due to their high energies, most of the muons survive down to ground level
in spite of their short lifetime of τµ± = (2.19703 ± 0.00004) µs [7] by time
dilatation

τ = γτ0 (18)

with

γ =
E

m0c2
=

1√
1 − β2

, (19)

β = v/c and v being the speed of the particle and c the speed of light.

All decay processes are statistical processes and therefore are subject to the
decay law

N(t) = N0 · e−λt (20)

with the decay constant λ = 1/τ .

Besides this time dependent behavior of particle decay, there is an additional
effect if the particle is not flying through vacuum but rather through a ma-
terial in which additional collision processes play an important role.
The mean free path length λ for a spontaneous decay in matter can be written
as [8, p11]

1

λ
=

1

βγcτ0̺
(21)

with ̺ [g cm−3] being the matter density of the medium the particle is travers-
ing. After a piece of slant depth dX,

dN =
N0

λ
dX (22)

particles of an original population N0 will have decayed. As X is not neces-
sarily constant, an integral form remains as solution of this equation:

N(∆X) = N0 exp

(
−
∫

dX

λ

)
. (23)
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2.2 Energy losses and scattering processes

Besides decays, all charged particles suffer energy losses when traversing a
medium. The dominating process is dependent on the energy of the particle:

• Ionization and excitation
The particle frequently hits atoms/nuclei of the medium and loses an
amount of energy dE after crossing the medium by a distance dx (ex-
pressed in terms of column density ; dx = [g cm−2]). The energy loss is
described by the Bethe-Bloch formula [8, p16]. It is

−
(

dE

dx

)
= 4πNAre

2mec
2z2 Z

A

1

β2

[
ln

(
2mec

2γ2β2

I

)
− β2 − δ

2

]
(24)

with

me rest mass of the electron
re classical electron radius
NA Avogadro’s number
I Ionization constant (approx. I = 16 · Z0.9 eV for Z > 1)
δ density effect factor

• Bremsstrahlung and pair production

For higher energies, charged particles will additionally become subject
to energy losses by bremsstrahlung (bbs), pair production (bpp) and nu-

clear interactions (bni) via photo-nuclear processes [8, p16].
All these effects are contributing additively and are depending on the
energy of the particle:

b(E) = bbs(E) + bpp(E) + bni(E) (25)

and are assumed to be effects proportional to energy.

Together with ionization losses (aion(E)), we obtain an overall formula
for all interaction processes mentioned above:

dE

dx
= aion(E) + b(E)E . (26)

The process of energy loss will continue until a minimal energy, the
critical energy Ec, is reached. For electrons, Ec can be approximated
by
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Ec =
800

Z + 1.2
(27)

where Z is the atomic charge of the medium traversed [8, p18]. For
muons, the critical energy is Ec ≃ 500 GeV [1, p139].

2.3 Sources of cosmic rays and acceleration mecha-

nisms

There are several possible processes that can bring matter to high energies.
All of these processes are responsible for accelaration of particles within a
certain energy range, creating the spectrum of high energy cosmic rays.

2.3.1 Solar cosmic radiation

Our Sun emits a lot of particles, mainly photons, electrons/positrons, protons
and neutrinos. The source of the highest particle flux (about 5 · 108 cm−2 s−1

protons arrive at the Earth) is the solar wind [9, p176]. The proton energy is
only a few keV so the solar wind does not play a role for the energy spectrum
of high energy cosmic rays.

Much more interesting for the shape of the low end of the energy spectrum is
the generation of high energy particles by solar flares. Solar flares are sudden
eruptions of the Sun’s chromosphere [9, p176]. Particles emitted by a solar
flare can carry energies up to 50 GeV [9, p183].

2.3.2 Fermi acceleration

One theory of accelaration of particles when emitted from SN remnants is
the Fermi accelaration [1, p63]. Particles expelled from the SN collide with
interstellar clouds with inherent turbulent magnetic field. If the cloud has
the relative velocity βcl = vcl/c, the energy of the particle in the coordinate
system of the cloud is

E ′
0 = γcl(E0 + βclp0) . (28)

with E0 being the particle energy in the lab frame. The interaction of the
particle with the magnetic field of the cloud is assumed to be totally elastic,
i.e. particle energy and the amount of momentum will not change, only its
direction will be reversed in this simple model. Leaving the cloud again, the
particle will carry the energy

E1 = γcl(E
′
0 + βclp

′
0) = E0γcl

2(1 + βcl)
2 . (29)
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The energy gain for one of such a process is then

∆E

E
=

E1 − E0

E0
= γcl

2(1 + βcl)
2 − 1 . (30)

Considering the angles under which the particle enters (θ1) and leaves (θ2)
the cloud, the average energy gain is ∆E

E
≃ 4/3βcl

2.
After a number of n acceration steps, the particle energy will amount to

En = E0

(
1 +

∆E

E

)n

. (31)

2.3.3 Acceleration by shock waves

Another acceleration mechanism is the acceleration of particles of the SN
remnant by shock waves with velocity vS emitted by the SN [1, p65].
The velocity of the shock wave is vS ≃ 4

3
vR with vR being the speed of the

particle expelled from the SN remnant. If the radius of the shock wave is
much larger than the gyroradius rg = pc

ZeB
of the particle, the shock wave can

be regarded as a hard plane where particles are reflected at. Transforming
vR and vS (lab frame) into the frame of reference of the shock wave, the
particles gain energy by a factor of

ξ ∝ 4

3
βS , (32)

where βS is the relative velocity β = (u1 − u2)/c of the shock wave in the
shock frame.

Acceleration by shock waves is much faster than the Fermi acceleration [1,
p64].

2.3.4 Galactic confinement

The Milky Way has an inherent galactic magnetic field of approximately
B = 3 µG. Charged particles will be bent in the magnetic field with their
Larmor radius dependent of the momentum of the particles.

For highly relativistic particles, there is a maximal energy for the particles
being confined by the magnetic field, given by Emax ≈ c · pmax ≤ eBR.
In units appropriate for astroparticle physics, the maximum energy can be
calculated by

Emax = 105 TeV
B

3 µG

R

50 pc
(33)
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with R being the size of the source. Assuming a gyroradius of R = 5 kpc,
one obtains Emax = 1019 eV. Particles with energies beyond this energy are
most probably originating from extragalactic sources [10, p164].

2.4 Energy spectrum

The flux of cosmic particles arriving at the Earth has been subject to a lot
of research and experiments established within the last decades. The basic
quantity that has to be measured is the differential energy spectrum

j(E) =
dN(E)

dA dΩ dE dt
[cm−2 s−1 sr−1 GeV−1] . (34)

For low energy particles (E0 < 15 GeV for protons), the geomagnetic field
is an obstacle for particles reaching the surface of the Earth. The trajecto-
ries of charged particles will be bent, forcing them to move parallel to the
magnetic field lines and thus parallel to the ground plane. An analytical
theory for a dipole field approximation had been developed by Størmer [1,
p99]. The solution expresses the particle motion in units of the Størmer ra-

dius rS =
√

µ0M/4πR where M is the dipole moment of the Earth (M ≃
8.1 · 1025 G cm3). The rigidity is

RS(r, λB, θ, ϕB) =

(
M

2r2

){
cos4 λB

[1 + (1 − cos3 λB sin θ sin ϕB)1/2]
2

}

(35)

where θ is the zenith angle of the particle, ϕB the azimuthal angle, measured
clockwise from the direction of the magnetic south pole and λB the magnetic
latitude.
The deflection of charged particles at energies below 15 · 109 eV away from
the Earth explains the flattening of the energy spectrum in Fig. 1 at the very
left part of the scale.

For energies higher than ≈ 50 GeV, charged particles are not influenced by
the geomagnetic field anymore. From that point, the differential spectrum
decreases with a power law [5, p233]

dN

dE
∝ E−γ (36)

with the spectral index γ. The spectral index depends on the type of parti-
cle [1, p105]. The chemical composition of cosmic rays is quite well-known
up to an energy of 105 GeV from balloon and satellite experiments. Beyond
this energy, different particle types cannot be distinguished directly anymore
due to their very low flux.
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Figure 1: The energy spectrum of cosmic rays [11].

Up to an energy of approximately 106 GeV, cosmic rays are believed to orig-
inate from SN remnants [1, p11], the spectral index within that range is
γ ≃ 2.7 constantly (see Fig. 2). Between 106 < E < 107 GeV, the spectrum
becomes steeper until it amounts to γ ≃ 3 [5, p233]. This region is known as
the knee of the cosmic ray spectrum. The sources of cosmic rays with ener-
gies larger than those of the knee are assumed to be of extragalactic origin.

At energies of 1018 eV, the spectrum flattens again (called the ankle). For
energies larger than 1020 eV, Greisen, Zatsepin and Kuzmin predicted a
sharp cutoff in the spectrum due to interactions of the cosmic ray particles
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Figure 2: Energy spectrum of high and ultra-high energy cosmic rays measured
by different experiments [7].

with the cosmic microwave background (CMB) by the reaction chains

p + γCMB → ∆+ → p′ + π0 (37)

or

p + γCMB → ∆+ → n + π+ . (38)

Particles with energies E > 1020 eV would steadily lose energy by such pro-
cesses until the threshold energy of EGZK ≈ 1020 eV is reached [12]. This
effect is known as the GZK cutoff.

Fig. 2 shows the energy spectrum of cosmic rays normalized to E−2.7, mea-
sured by different EAS experiments.

2.5 Development of EAS in the atmosphere

An EAS starts with the first (hadronic) interaction (see (1)) in the higher
regions of the atmosphere. The secondarily produced particles will create
higher order generations of particles, this is called a cascade. We can seperate
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an EAS into two kinds of cascades qualitatively: A hadronic cascade and
an electromagnetic cascade. Besides, there is a muonic component. The
development of an EAS is demonstrated schematically in Fig. 3.

Figure 3: Schematic visualization of the development of an EAS in the atmo-
sphere.

2.5.1 Electromagnetic cascade

The electromagnetic cascade of an EAS consists of photons, electrons and
positrons. The longitudinal development of the electromagnetic cascade can
be described by the Heitler model [1, p174]. One particle (according to the
number of particle generation considered) decays after a length λ into two
subparticles; both carrying half of the primary energy. This process keeps
ongoing recursively, happening every radiation length ∆X = λ, until the pro-
duced particles undershoot the critical energy Ec where further interactions
can occur. For that reason, the maximum number of particles produced in
the electromagnetic cascade is

Nmax =
E0

Ec
. (39)

Nmax is reached after a maximum depth of
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Xmax = λ ln(E0/Ec) . (40)

The Heitler model is an oversimplification of the physics of an electromagnetic
cascade.

2.5.2 Hadronic cascade

When the first generation of pions (according to (1)) has been generated, a
pair of charged pions will produce on average two thirds of charged and one
third of neutral pions in the reaction

π+ + π− → π+ + π− + π0 . (41)

The neutral pion will immediately decay and generate an electromagnetic cas-
cade according to (13). The charged pions have a much longer lifetime and
can therefore either decay or re-interact; pions of highest energy will prefer-
ably re-interact due to their large time dilatation. The decay/interaction
competition of all charged mesons determines the shape of development of
the hadronic cascade.

Although the process of hadronic cascades is much more complicated than
that of electromagnetic ones, the Heitler model still can be used to describe
the development of the hadronic cascades, too.

2.5.3 Muonic component

The charged pions of an EAS decay into a muon and a muon neutrino. Most
of these muons have a momentum high enough to survive down to the ground
level. For that reason, muons do not generate a cascade. After a short dis-
tance, the maximum number of muons is reached and kept for the remaining
development of the air shower.

The number of muons can be estimated by

NA
µ = A [(E0/A)/ǫπ]

β = A1−βNp
µ (42)

for a primary nucleus of mass A and energy E0. Np
µ is the number of muons

for a corresponding EAS with a proton primary. β is set to β = 0.85.
By measuring the ratio Ne/Nµ at ground level, there is the possibility to
reconstruct the the type of the primary nucleus. Ne can be obtained from
(45) [1, pp187].
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Fig. 4(a) demonstrates that the number of muons is constant for nearly the
whole development of an EAS. Fig. 4(b) shows the number of muons in
dependence of the primary energy.

(a) Comparison of the number of different types of
particles of an EAS in dependence of the slant
depth X [9, p151].

(b) Distribution of the number of muons for differ-
ent primary energies. From top to the bottom
the muon energy thresholds are 0.3, 1, 3, 10
and 30GeV [1, p189].

Figure 4: The muonic component of an EAS.

2.5.4 Longitudinal shower development

The most important parameters of the longitudinal development of an EAS
are the depth of shower maximum Xmax and the number of electrons at that
place Nmax

e . With a modified Heitler model for electromagnetic and hadronic
component combined [1, p185], Xmax can be described as

Xmax = X0 ln

(
2(1 − Kel)E0

(〈m〉/3)ǫ0

)
+ λn(E0) (43)

if 〈m〉 = 12 secondary pions are produced. The number of electrons at the
shower maximum is

Nmax
e =

1

2

〈m〉
3

(1 − Kel)E0

ǫ0
, (44)

where E0 is the primary energy of the nucleon and λN = 80 g cm−2 the in-
teraction length. ǫ0 is the effective energy of the neutral pions. The factor
(1 − Kel) = 0.5 describes the fraction of energy loss. With this choice of
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values, one obtains Xmax = 500 g cm−2 and Nmax
e = 8 · 104 for a 105 GeV

proton.

A continuous estimation of Ne dependent to X has been proposed by Gaisser

[1, p186]:

Ne(X) = Nmax
e

(
X − X1

Xmax − λ

)Xmax−λ

λ

exp

(
−X − X1

λ

)
(45)

with X1 as depth of first interaction. This formula is well known as Gaisser-

Hillas formula. Only electrons exhibit a Xmax, the number of muons remains
more or less constant until the ground level is reached. Fig. 5 shows the
shape of Ne(X) for ten different air showers.

Figure 5: Longitudinal shower development for ten different EAS [1, p186].

2.5.5 Lateral shower distribution

Due to bremsstrahlung and pair production, secondary particles of an EAS
are not emitted into the direction of the primary one. In addition, electrons
change their direction by Coloumb scattering [1, p178]. The average angular
deviation for multiple Coulomb scattering is given by

〈
δθ2
〉

=

(
Es

E

)2

δX (46)

with the effective energy Es = mec
2
√

4π
α

= 21 MeV [1, p179].
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A theory for the lateral spread of shower particles had been developed by
Greisen, Kamata and Nishimura [1, p179], therefore called NKG-like
function. The particle density ρe(r, X) in dependence of the distance r to
the shower axis and the shower depth X is

ρe(r, X) = Ne(X)
C(s)

rM
2

(
r

rM

)s−2(
1 +

r

rM

)s−9/2

(47)

with the Molière radius

rM =

(
Es

Ec

)
X . (48)

The Molière radius is a characteristic value that indicates the distance from
the shower axis where the radiation has attenuated to approximately 1/4 of
the intensity that is reached after one radiation length. s is a parameter that
describes the “age” of the shower. C(s) is a normalization coefficient derived
from the definition of (47):

2π

Ne(X)

∫ ∞

0

rρ(r) dr = 1 . (49)

(47) is the most general form of the NKG-like function. For specific air shower
experiments, a parameterization for different shower ages is meaningless as
the lateral distribution of the particles of an EAS are always measured on
ground level. For this purpose, (47) is adapted to the expected signals at the
altitude of the ground detector stations.
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3 The Pierre Auger Observatory

The Pierre Auger Observatory (PAO), located in the Pampa Amarilla (yellow
prairie) near Malargüe, Western Argentina, is one of the latest and largest
astroparticle experiments in the world.

The main goal of the PAO is the examination of primary cosmic particles
with energies above 1019 eV [13, p55]. The observatory reaches full accep-
tance at approx. E > 3 · 1018 eV [14]. Beyond energies of 1019 eV, there are
many open questions to physics concerning particle accelaration and sources
of UHECRs as well as chemical composition of cosmic rays, energy spectrum
and anisotropies of point sources3. Even exotic models such as topological de-
fects or the existence of magnetic monopoles are subject to the investigation
of UHECRs by the PAO [13, pp32].
As the cosmic particle flux (in units of sr−1 km−2 yr−1) decreases with a power
law, ultra-high energy cosmic rays (UHECRs) cannot be measured directly
by i.e. satellite or balloon experiments. UHECRs must be detected indirectly
via extended air showers (EAS)4.

The PAO consists of two independent detector systems: Four fluorescence
detector (FD) telescope sites on the one hand and a surface detector (SD),
containing 1600 water Čerenkov tanks located at a distance of 1.5 km to
each other in a strict hexagonal shape on the other hand. The SD tanks are
filled with 12 m3 highly purified water and equipped with 3 photomultipliers
(PMTs), covering an area of approx. 3000 km2. This is about the size of the
Saarland or Rhode Island. The layout of the PAO is shown in Fig. 6.
An online survey webpage (“Little brother”) displays the status of the SD
array (see Fig. 7).

The data of all SD stations and FD telescopes is transmitted to the central
data acquisition system (CDAS) storage cluster situated in the central PAO
office building. Fig. 10 shows a photo of the office building.

3.1 The fluorescence detector

The secondary particles of cosmic radiation excite the atoms of the atmo-
sphere, mainly nitrogen. After the de-excitation, the atoms emit fluorescence

3In 2007, the PAO caused quite a stir when the collaboration published a study onto
anisotropies. A general anisotropy of sources of UHECRs could be affirmed with more
than 99% confidence level; moreover, a correlation with AGNs being point sources could
be demonstrated for 20 out of 27 events [16].

4A rather new technique measuring EAS is the detection of radio signals from syn-
chrotron radiation generated by e+/e− pairs produced via pair production.
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Figure 6: Map of the Southern site of the Pierre Auger Obervatory in the Pampa
Amarilla, Argentina. The red dots indicate the positions of the SD stations, the
blue lines are the viewing directions of the four FD eyes [15].

light. The fluorescence light can be detected by very sensitive telescopes.
The fluorescence detector consists of an 20x22 array of hexagonal PMTs, the
camera, arranged on a quasi-spherical support, located on the focal surface
of a segmented mirror [17]. The PMTs are sensitive for detecting photons
in the wavelength range between 300 nm and 400 nm [18]. Six telescopes are
building up one eye. The PAO has four eyes: Los Leones, Coihueco, Los
Morados and Loma Amarilla. Fig. 8 shows Los Leones with open bays. Each
eye is equipped with a LIDAR system (see Sec. 3.3) that provides atmo-
spheric and weather calibration data. Together with SD data, events can be
reconstructed including SD and FD data (hybrid events). Hybrid events have
a better angular resolution than mere SD events. The fluorescence detector
can only be operated in clear, rainless, moonless nights.

3.2 The surface detector

The surface detector of the PAO is made up of about 1660 water Čerenkov
tanks. Ultra-relativistic particles will produce Čerenkov light when traversing
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Figure 7: Status (uptime during day) of all deployed SD stations on the 21st of
August in 2008 [19].

the tank. Three PMTs, mounted in a triangular placement on the top of
each tank, are looking into the interior of the detector station and detect
the Čerenkov photons (mainly scattered light). Each PMT has a low and
a high gain output to handle weak signals as well as large ones. The PMT
signals are digitalized by 10-bit-FADCs (Flash analogue-to-digital converter),
so there is a range from 0 to 1023 channels available. Fig. 9 shows the pair
tanks “Carmen” and “Miranda”.

3.3 LIDAR

LIDAR stands for LIght Detection And Ranging. The FD telescopes of the
PAO are intended to detect UV excitation radiation of nitrogen. The emitted
light has to bridge a long distance through the atmosphere and is scattered
by aerosoles. Furthermore, also Čerenkov photons generated by the particles
of an EAS can in principle be detected.
All those background effects have to be taken into acount and are not con-
stant in time. For this purpose, the LIDAR system periodically checks the
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state of the atmosphere by scanning it with a laser system once per hour [18].

3.4 CLF

For calibration purposes, the Central Laser Facility (CLF) provides a laser
system whose emitted wavelength is near to the excitation wavelength of
nitrogen. The CLF shoots 50 pulses of 500 ms at a wavelength of 355 nm
duration every 15 minutes vertically into the sky. Their power is 7 mJ, which
corresponds to an EAS of a primary energy of ≈ 1020 eV [20], which is near
the predicted limit of the GZK cutoff.
The laser shots can be seen in the FD data files. Depending on the state of
the atmosphere (clouds, fog, dust, aerosoles, etc.) the beam is backscattered
or diffused.

3.5 APF light source

Besides weather effects in the higher atmosphere, one has to consider dust and
aerosoles on ground level due to Mie and Rayleigh scattering [21]. Objective
of this light source is to determine an Aerosole Phase Function (APF).
The APF light source of the PAO is located ≈ 1.3 km southwestern of the
Coihueco FD site, containing 3 Xenon flash lamps with wavelengths of 330,
360 and 390 nm to cover the full detection range of the FD PMTs.

Figure 8: The FD telescope site of “Los Leones” with open bays [22].
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Figure 9: The Surface Detector stations “Carmen” and “Miranda”, the first SD
stations working in pair tank configuration. The FD site of Los Leones can be
seen in the background [22].

Figure 10: Office building of the PAO with the CDAS transmission antenna on
the left (photograph taken by myself during my FD shift stay in October 2007).
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4 The surface detector tank

Each water Čerenkov tank of the PAO SD array has a diameter of 3.6 m and
a height of 1.20 m. Inside the tank a sealed liner is embedded, filled with
12 000 l of highly purified water [23, p3]. A picture of a SD tank is shown in
Fig. 11.

The liners of the stations consist of one outer layer of Tyvek5, coated with a
thin layer of TiO2 pigmented low-density polyethylene (LDPE), followed by
coats of clear LDPE, black LDPE and a terminal layer of clear LDPE.

The stations are equipped with three nine-inch-diameter PMTs of type
XP 1805 [24], assembled in a regular triangular shape with a side length
of 1.20 m, facing downwards perpendicularly into the water. The PMTs are
protected by a transparent windows of polyethylene.
The tanks are designed for a lifetime of about 20 years, exposed to a tem-
perature range from −15 ◦C up to +50 ◦C [23, p6].

The detector stations are self-containing with a solar module providing an
average power of 10 W. A rechargeable battery stores charge for operation
of the station at night.

An injection-molded housing outside the tank contains the tank electronics,
including a front-end data processing unit, a GPS receiver, a radio transceiver
and a power controller. One half of the front-end electronics had been tested
at the Universities of Siegen and Wuppertal before being shipped to Ar-
gentina and mounted in the Čerenkov tanks [25].

4.1 Čerenkov radiation and its detection

When charged particles traverse a medium with a refraction index n > 1 with
speed greater than speed of light in the medium v > cn, they will produce
photons emitted in a light cone with an aperture angle of

cos θC =
1

nβ
(50)

with β = v
c

where c is the speed of light in vacuum. The amount of en-

ergy (which is proportional to the number of Čerenkov photons) emitted by
Čerenkov radiation is given by

dE

dx
=

(ze)2

c2

∫

ǫω>(1/β)2
ω

(
1 − 1

β2ǫ(ω)

)
dω (51)

5Tyvek 1025-BL is a strong and very diffuse reflective polyolefin of the Dupont company.
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where ǫ(ω) is the wavelength dependent dielectric coefficient [26, p737] and
z the charge number of the particle. The functional relation of the dielectric
coefficient is depending on the theoretical model considered (oscillator model
[26, p358], anomolous dispersion and resonance absorption [26, ibid] and a
model for high frequency limits [26, p362]).
For a very narrow frequency range (which is a good approximation due to
the limited wavelength efficiency range of the PMTs), ǫ(ω) can be considered
as a constant. (51) can then be expressed by the constant index of refraction

by substituting n =
√

µ
µ0

ǫ
ǫ0

in terms of number of Čerenkov photons per unit

of distance [10, p55]:

dN

dx
= 2παz2λ2 − λ1

λ1λ2
sin2 θC (52)

with λ1, λ2 being the boundaries of the considered wavelength range.

The photons are detected by the PMTs with a certain probability depending
on the wavelength, so we obtain

dN

dλ
= 2πα(1 − 1

nH2O
2
)
ǫPMT(λ)

λ2
(53)

Figure 11: SD station and its most important components [23].
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with the quantum efficiency ǫPMT(λ) [27]. This is only an upper bound
for estimating the number of Čerenkov photons detected in the stations.
Within one absorption length Labs, a certain number dNH2O of photons will
be absorbed in the water by

dNH2O = −cH2O

Labs
N(t)dt . (54)

cH2O is the speed of light in water. Additional photons will be absorbed
by the inner surface of the liner (area A) with an absorption probability
Cabs. The liner envelopes a volume V of water. In this case, the number of
absorbed photons dNwall is angular dependent:

dNwall = −CabsA cH2O

2V
N(t)dt

∫ 1

0

cos α d(cosα) = −CabsA cH2O

4V
N(t)dt .

(55)
Taking into account the fraction of absorption of Čerenkov photons by the
three PMTs, each of them covering an area of APMT, the overall absorption
rate becomes

1

N(t)

dN

dt
= −cH2O

(
1

Labs
+

CabsA + 3APMT

4V

)
. (56)

4.2 VEM calibration

When particles produce Čerenkov light in a SD tank, the three PMTs will
register a time-dependent signal. The read-out electronics is clocked with
40 MHz, so the signal can be divided into time bins with a width of 25 ns.
768 time bins are stored in a ring buffer.

The analogue signals of the PMTs are converted to channel numbers by the
DACs of the FE (front-end) board according to the charge deposit in the
PMTs of the (10bit-FADCs → 1024 channels numbered from 0 . . . 1023) [28,
p840].
To make the integrated signals of the stations comparable to each other,
the detector tanks have to be calibrated frequently to one common reference
unit. This unit was chosen to be 1 VEM (Vertical Equivalent Muon). 1 VEM
should be the signal measured for one centered muon traversing the tank ver-
tically without being stopped. Actually, the unit VEM can either describe
a peak of a current Ipeak

VEM induced in the PMT or the overall charge QVEM

deposited by one muon.

As the signals in the PMTs are spread in time, one has to distinguish be-
tween the peak height Ipeak

VEM a VEM generates in one of the 768 recorded time
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bins and the overall charge QVEM that is deposited in the PMTs. Therefore,
there is a slight difference when plotting the charge (QVEM) and pulse height
(IVEM) histograms (Fig. 12).

Figure 12: Charge and pulse height histogram used for VEM calibration [28].

The VEM charge QVEM for one PMT is calculated by integrating over 625 ns
(corresponds to 25 time bins) from the point where its current peaks at the
threshold of IVEM = 1.75 VEM and then dividing by 1.75 [29, p813].

In Fig. 12, it can be seen that the position of the maximum measured by a
reference SD tank (solid, black line) is not exactly the position of the ADC
channel equivalent to 1 VEM because the angular muon distribution is con-
voluted with the mean muon track length (which is depending on the zenith
angle either). By overlaying a muon distribution observed by an external
muon telescope (dashed, red line) whose peak corresponds to exactly 1 VEM
by selecting only vertical tracks, a correction factor between the peak ob-
served by the SD tank and the actual VEM peak position can be obtained6.
The VEM calibration procedure is performed in three steps [28, p841]:

1. The end-to-end gains of the 3 PMTs are adjusted by regulating their
high voltages until the charge histograms of the PMTs match a ded-
icated point of the charge histogram of the reference tank. By this
procedure, Ipeak

VEM is set to ADC channel no. 50 approximately7.

6In [33], this correction factor is declared as 1.1, i.e. the peak height divided by 1.1
corresponds to 1 VEM.

7End-to-end gain means that the high voltage of the 3 PMTs is adjusted so that the
three seperate PMT charge histograms agree.
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2. Continually perform a local calibration to determine Ipeak
VEM in units of

ADC channels to adjust the electronics trigger level.

3. Determine the value of Qpeak
VEM using charge histograms and apply the

conversion from Qpeak
VEM to 1 VEM to obtain a conversion from the inte-

grated PMT signals to VEM units.

Besides, a frequent online calibration is performed. The high voltage is not
changed, only the channel number that corresponds to Ipeak

VEM is adjusted by
a σ-δ compensation as long as the re-calibrated channel number shows no
deviation larger than 20 channels of the nominal value of 50 channels.

4.3 The trigger system

The trigger system of the surface detector of the PAO consists of 5 sequential
steps [30]. The T1 and T2 trigger levels are implemented harware sided in
the tank electronics (programmed in the FPGA (Field Programmable Gate
Array) of the front-end card). The T3 level (first offline level) decides whether
the event is written to the CDAS database. T4 and T5 are pure offline
triggers.

• T1 trigger: The T1 trigger has two different modes. The first mode
is called Time over Threshold (ToT) and requires at least 13 bins in
a 120 bins window (equivalent to a time window of 3 µs) with signal
above a threshold of 0.2 Iest

VEM with a coincidence in two of the three
PMTs installed in a water Čerenkov tank. This trigger layer works at
a rate of about 1.6 Hz.
The second mode of the T1 trigger only requires one bin with a current
above a threshold of 1.75 Iest

VEM but a 3-fold coincidence of the PMTs.
This mode is more noisy than the ToT trigger mode (trigger rate about
100 Hz) but allows to examine very fast events (200 ns), needed for the
detection of horizontal muonic components.

• T2 trigger: The T2 trigger level directly promotes all events that have
passed the T1 ToT trigger. If the event had triggered the T1 threshold
mode, the T2 level checks for a 3-fold coincidence with a minimum
current of 3.2 Iest

VEM.

• T3 trigger: The T3 trigger level has two different trigger conditions.
The first one requires a coincidence of 3 tanks which have passed the
T2 ToT trigger condition (3ToT). Since the T2 ToT already has a very
low background, the 3ToT condition selects mostly physical events.
The event rate of this T3 trigger is about 600 per day.
The second T3 trigger condition requires a four-fold coincidence of any
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T2 with a “moderate” compactness requirement (among the 4 fired
tanks, one can be up to 6 km away from the others if compatible to
the ∆t = d/c timing condition). This trigger is especially needed to
detect very inclined showers that generate fast signals and have a wide
topological pattern. This T3 selects about 400 events per day but only
2% of them are real showers.

• T4 trigger (physical trigger): The T4 physical trigger is imple-
mented to let pass only real physical air showers from T3 data. In
a first step, events with an estimated zenith angle of θ < 60◦ are se-
lected. The T4 trigger is dual and requires either a compact 3ToT or a
compact configuration of any locally triggered tanks where at least one
fired station has 3 triggered tanks out of its first six neighbors, called
4C1 configuration. The tanks satisfying the 3ToT or 4C1 condition
must have their trigger time compatible with speed of light (with a
tolerance of ∆t = ±200 ns to keep very inclined showers). With the
3ToT condition of the T4 trigger, less than 5% of all showers below
60◦ are lost. The 4C1 configuration rescues the 5% of showers below
60◦ that would get lost by the 3ToT level and also selects low energy
events above 60◦. 99% of the events that pass the two T4 triggers can
be reconstructed.
Fig. 13 shows the geometrical layout of the 3ToT and the 4C1 config-
uration.

Figure 13: 3ToT (green) and 4C1 (red) T3 trigger configuration.

• T5 trigger (quality trigger): The T5 quality trigger ensures that
only those events that can be reconstructed with a known energy and
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sufficient angular accuracy to improve the quality of the measured
Auger energy spectrum.
One objective of the T5 event selection is to filter events that have
their shower core near the border of the SD array. In those cases parts
of the shower are probably missing and the real core position could
be located outside the array. This would also lead to wrong primary
energy estimations.
The adopted T5 trigger requires that the tank with highest signal
(hottest tank) must have at least 5 working tanks among its 6 closest
neighbors at the time of the event detection and that the reconstructed
shower core must be inside an equilateral triangle of working stations.
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5 The Auger Offline framework

This section describes the most important features of the Auger Offline frame-
work on the one hand and the official procedure of event reconstruction on
the other hand.

The framework is mainly a large collection of C++ classes that represent all
important features of the components of the detector systems of the PAO
(FD and SD), for real data as well as for MonteCarlo simulations including
full detector modelization using Geant4. The framework is based on the orig-
inally programmed CDAS code.

The execution of runnable programs is organized in seperately compiled mod-
ules, the chronology of processed modules is controlled by a configuration
XML file. The particular modules can be steered by XML files, too. This al-
lows the scientist to adjust the most important parameters of the algorithms
of the modules without recompiling or modifying any source code.

Events are read by the EventFileReader module. It is capable to handle six
different file formats [31]:

CDAS Native format of T3 SD data stored in the CDAS system
FDAS FD data
Offline In principle CDAS data with additional information like

results of event reconstruction and simulation data stored
IoAuger Internal Offline format
AIRES AIRES simulation output file of particles at ground

(grdpcles file)
CORSIKA CORSIKA simulation output file

The Auger Offline framework provides predefined modules that perform the
official event reconstruction, detector calibration and offline triggers [32].
The most important modules for SD event reconstruction are explained in
the following sections.

5.1 The SdEventSelector module

The SdEventSelector module checks stations that have been flagged as
candidates and discards stations that are members of the EA. The list of
stations (LsId, position, name, date of commission/decommission) can ei-
ther be obtain from the SStationList.xml file or from a database. For pair
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station treatment, the station with the higher LsId is removed by default
(The removement can be exchanged against flagging the station as acciden-
tal). Isolated stations, i.e. stations that have no neighbor within a distance
of 1800 m or only one within 500 m are flagged as accidental.

In a first step, the station data is checked for series of oscillations that could
have been generated by lightnings. It can be chosen whether those events
are removed from the analysis or not.

One purpose of the SdEventSelector is to calculate a seed, i.e. a tentative
estimation of a shower axis ~a and a position of the shower core. For cal-
culation of the seed, the three stations with the highest sum of signals are
drawn on. The estimated shower plane must be compatible with speed of
light, hence we have the equations

c(ti − t1) = −~a · (~xi − ~x1) for i = 1 . . . 3 , (57)

setting station 1 as local origin. The case i = 1 is trivial, the remaining
conditions lead to

~a · ~x21 = ct12 and (58)

~a · ~x31 = ct13 . (59)

(60)

The shower axis can additionally be expressed by

~a = α~x21 + β~x31 + γ(~x21 × ~x31) . (61)

Together with (57), we obtain the linear equation system

(
~x2

21 ~x21 · ~x31

~x21 · ~x31 ~x2
31

)(
α
β

)
= c

(
t12
t13

)
(62)

with the solution

α = c
(t12~x

2
31 − t13~x21 · ~x31)

D
, (63)

β = c
(t13 ~x21

2 − t12 ~x21 · ~x31)

D
and (64)

D = ~x2
21~x

2
31 − (~x2

21 · ~x2
31)

2 . (65)

As ~a has to be normalized (~a2 !
= 1), we must have
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γ2 =
1 − |α~x21 + β~x31|

|~x21 × ~x31|2
. (66)

After estimating ~a, the station start times are checked for time compatibility
with a planar shower front, i.e. the predicted shower time tsh at a position
~x has to be compared to the measured time of a station i with respect to its
distance to ~x:

tsh(~x) = ti − ~a · (~x − ~xi)/c . (67)

For each station i, the time difference ∆ti = ti − tsh must be in the range of

−1000 ns < ∆ti < 2000 ns . (68)

Stations outside this time interval are flagged as accidentals.

The T4 and T5 trigger selection algorithms of the SdEventSelector module
are described in Sec. 4.3.

5.2 The SdPlaneFit module

This module determines the shower plane of an event by χ2 minimization of
the time differences between the measured signal start time and the arrival
time predicted by

ct(~xi) = ct0 − (~xi −~b) · ~a , (69)

where t0 is the time offset, ~a the shower axis, ti the measured start time and
~xi the position of station i. With a time measurement uncertainty of σt, one
has to minimize

χ2 =
1

σt
2

∑

i

[ti − t(~xi)]
2 =

1

c2σt
2

∑

i

[cti − ct0 + ~xi · ~a]2 , (70)

which can be rewritten as

χ2 =
1

σt
2

∑

i

[cti − ct0 + xiu + yiv + ziw]2 (71)

using the direction cosines ~a = (u, v, w). u, v, w are constrained by u2 + v2 +
w2 − 1 = 0 ⇒ w =

√
1 − u2 + v2. (71) is not linear, with the simplification

zi ≪ xi, yi, the z component can be neglected an a linear χ2 can be achieved:

χ2 =
1

σt
2

∑

i

[cti − ct0 + xiu + yiv]2 . (72)
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After having obtained u and v by minimization of the linear χ2, w can be
evaluated exploiting w =

√
1 − u2 + v2.

5.3 The LDFFinder module

Once the plane fit of the event has been performed, the LDFFinder module
can be invoked. Amongst others this module calculates the primary energy
of an event.

Generally, the predicted lateral signal is described by

S(r) = S1000 · fLDF (r) (73)

with a normalized LDF fLDF , i.e. fLDF (1000 m) = 1.
The LDF fit is performed by executing sequential stages [31, p18]:

• Stage 1: Estimation of a shower plane
The shower geometry estimated by the SdPlaneFit module is regarded
as Stage 1

• Stage 2: First estimation of S1000

The signal of the station closest to a distance of 1000 m to the barycen-
ter is taken es preliminary S1000 value.

• Stage 3: Fit for S1000 and core position
In this step, S1000 and core location is fitted, assuming that the core
is situated on a plane tangent to the reference ellipsoid containing the
barycenter.

• Stage 3.βγ: Fit for S1000, core position, β and γ
Depending on the number of candidate stations, β and γ are gradually
included as variable parameters subjected to the minimization process.

• Stage 4.βγ: Treatment of zero-signal stations
This step is basically the same as Stage 3.βγ, but now including the
estimated signal of zero-station signals.

The user can choose between two kinds of LDFs:

Modified power law

fLDF (r) =

{ (
r

1000 m

)β+γ ln(r/1000 m)
(r ≥ 300 m)(

r
1000 m

)β+γ ln(300 m/1000 m)
(r < 300 m)

(74)

with the initial fit parameters
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β0 = 0.7 arctan(6 · (0.65 − cos θ)) − 3 and (75)

γ0 = 0.05 sin(8 · (cos θ − 0.6)) − 0.5 . (76)

NKG-like function A slightly modified NKG function according to (47)

fLDF (r) =
( r

1000 m

)β
(

r + 700 m

1700 m

)β+γ

(77)

is assumed with initial fit parameters

β0(θ) = 0.9 sec θ − 3.3 and (78)

γ0 = 0 . (79)

The default setting of using the NKG-like function is retained in this thesis.

In Fig. 14 the NKG-like LDF for a SD event (event ID: 4801049) with a re-
constructed primary energy of E0 = (3.00± 0.10) · 1019 eV and 24 candidate
stations is shown as an example.
The black data points indicate the signals of the candidate stations, the red
ones the signals of accidental stations. The small, blue triangles are saturated
stations (lower limits of the recovered signals); the reverse, blue triangles are
the upper bounds of the signals of silent stations.

Besides, the module calculates the impact point ~̃c of the shower from the
shower axis ~a and the barycenter ~b by

~̃c = ~c +
~n · (~b − ~c)

~n · ~a ~a . (80)

Two different types of minimization methods for fitting the LDF can be cho-
sen in the LDFFinder module. For the minimization procedure, the module
uses Minuit of the ROOT package.

5.3.1 χ2 minimization

For χ2 minimization, the algorithm calculates a weighted χ2 (with weight
factor σSi

, assuming that the signal fluctuates with σSi
=
√

S(ρi)) which
leads to

χ2 =
∑

i

[Si − S(ρi)]
2

σSi

2
(81)

with ρi = |~a × (~xi − ~c)|.
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5.3.2 The maximum likelihood method

The main advantage of the maximum likelihood method compared to χ2

minimization is the possibility of combining different signal distributions to
one likelihood function which is defined as

L =
∏

i

fP (ni, µi)
∏

i

fG(ni, µi)
∏

i

Fsat(ni, µi)
∏

i

Fzero(ni, µi) . (82)

From this formula we obtain the log-likelihood function

log L =
∑

i

ln fP (ni, µi)+
∑

i

ln fG(ni, µi)+
∑

i

ln Fsat(ni, µi)+
∑

i

Fzero(ni, µi) .

(83)

Small signals correspond to a small number of particles, thus we can assume
Poissonian statistics:

fP (ni, µi) =
µni

i e−µi

ni!
. (84)

For a large number of particles, the Poissonian distribution converges towards
a Gaussian one:

fG(ni, µi) =
1√

2πσi
2

exp

(
−(ni − µi)

2

2σi
2

)
. (85)

Saturated signals represent a lower limit for the actual signal. The probability
of detecting a signal larger than ni can be obtained by integrating over all
possible values larger than ni:

Fsat =

∫ ∞

ni

fG(n, µi) dn . (86)

The signal of stations that do not trigger can be estimated by exploiting
Poissonian distribution for a number of particles ni < ntresh = 3 (which
corresponds to a signal Si ≈ 3 VEM):

Fzero(nthresh, µi) =

nthresh∑

n=0

fP (n, µi) . (87)

Another important task of the LDFFinder module is the determination of a
curved shower front by either an analytical approach or an exact fit.
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5.4 The SdRecPlotter module

This module visualizes the most important results of the reconstructed data
of a particular event such as station signals, shower axis and shower core
within the station array; furthermore station timing, the LDF fit and a text
box containing important statistics such as primary energy, zenith and az-
imuth angle are displayed. Fig. 15 gives an example of the graphical output
of the module.

The upper left panel shows the shower axis and important signal information
within the SD array geometry. The radii of the circles indicate the square
roots of their signals, the colors the station timing, circles with border lines
saturated stations; semicircles are twin stations. Red crosses mark accidental
stations, hollow circles are silent stations. The red, sliced circles depict the
shower core, the red line is the shower axis.

The timing information of the stations is drawn in the upper right panel.
The black data points are the start times of the candidate stations, the red
ones those of accidentals. The light blue points above indicate the rise times
t50%, with the lower error bar being t50% − t10% and the higher error bar
t90% − t50%.
The light blue, dashed curves indicate the limits of station timings, the green
circles the fit of the shower front curvature.

The lower left panel is the LDF fit and displays the same kind of graphics as
shown in Fig. 14. The meanings of its entries have already been described in
Sec. 5.3.



48 5.4 The SdRecPlotter module

r / km
0.5 1 1.5 2 2.5 3 3.5 4

S 
/ V

E
M

1

10

210

310

r / km
0.5 1 1.5 2 2.5 3 3.5 4

S 
/ V

E
M

1

10

210

310

Figure 14: LDF fit (event ID: 4801049) obtained from the LDFFinder module.
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Figure 15: Example for a visualization of a reconstructed SD event generated by
the SdRecPlotter module.
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6 Measuring signal fluctuations

One of the most important parameters of an EAS that has to be obtained
from SD reconstruction is the estimated primary energy of the event. Only
with the reliable knowledge of the signal uncertainties, which have a signif-
icant influence onto the LDF fit (see Sec. 12), it is possible to combine the
results to a differential energy spectrum. According to (81) and (83), the un-
certainty of the reconstructed S1000 is a direct parameter of the uncertainty
of the primary energy.

S1000 can be obtained from a LDF fit to the signals of the candidate tanks
once the shower core and the shower axis have been reconstructed. For the
fit procedure it is necessary to estimate the uncertainties of the particular
tank signals.

In order to investigate size and origins of signal fluctuations, it lends itself to
measure the particles of one EAS with two identical detector tanks at nearly
the same location.
These twin tanks (or pair tanks) are positioned at a distance of 11 m to each
other. Due to this short distance, the signals induced by the particles of an
EAS can initially be assumed to be almost the same, thus the following Null

hypothesis can be established:

Without fluctuations, corresponding pair tanks would
measure the same signal of one particular EAS.

Of course, due to statistical and electronic fluctuations, both tanks will re-
turn slightly different signals. The reasons are [33]:

• Tank fluctuations: Fluctuations inside the tank due to calibration
uncertainties, temporal detector instability (e.g. temperature devia-
tions). They can be parameterized as follows:

(
σ

µ

)2

exp

=

(
σ

µ

)2

light

+

(
σ

µ

)2

#pe

+

(
σ

µ

)2

gain

(88)

where
(

σ
µ

)2

exp
are the overall tank fluctuations, consisting of contri-

butions stemming from the fluctuations of the number of Čerenkov

photons
(

σ
µ

)2

light
, the generation of photoelectrons

(
σ
µ

)2

#pe
and the un-

certainty of the gain amplification in the PMT anode
(

σ
µ

)2

gain
[34].
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• Sampling fluctuations: Poissonian fluctuations of the number of
particles that hit the tank.

• Muon track length: Muons are capable to traverse the tank volume
completely due to their high energy and small energy loss dE/dx (see
Sec. 2.2) whereas e± and photons will be stopped/absorbed immedi-
ately. While propagating through the water, one muon generates a
certain number of Čerenkov photons that is proportional to the dis-
tance the muon covered in the detector tank. An increased signal also
increases signal fluctuations. This effect is depending on the zenith
angle of the particle.

• LDF effect: The particle density at each tank can change as they are
11 m apart. The LDF is a smooth approximation to the real lateral
shower distribution; a larger fluctuation of the number of particles can
be expected the nearer a tank is located to the shower axis.

• Azimuthal effect: When not all 3 PMTs in a detector are providing
a signal (e.g. one PMT is removed from CDAS because it is masked
as “Raining PMT”), the measured, total signal will depend slightly on
the azimuthal angle φ8.

The usage of pair tanks for signal fluctuation analysis was first proposed by
Alan Watson in 2001, the first analysis of this type was the measurement
of coincidence rates in pair tanks [35].
The analysis of signal fluctuations began with the EA (Engineering Array)
in 2003 [36] with the pair stations “Carmen” (LsId 49) and “Miranda” (LsId
64). Both stations were commissioned on 2000-01-01 and decommissioned
on 2005-06-28 [37] [38].

The tank with the lower LsId is the “main” tank, i.e. its signal is considered
for event reconstruction. The other one is tagged as accidental for fluctuation
analysis (by default, it is discarded). The signal of the main tank will always
be denoted by S1, the signal of the partner station by S2.
The following terminology will be used in the analysis of this thesis:

Pair tank event A pair tank event (or just pair event) is an EAS recorded
by the SD CDAS with both stations of at least one tank pair having
their integrated VEM traces availabe. The event and the tanks have
to fulfil the specifications described in Sec. 7.

Pair tank sample A pair tank sample (or just sample) is one single tank
pair (with signals available for both stations) of a pair tank event9.

8The azimuthal effect will not be investigated in this thesis.
9One pair tank event may contain more than one sample.
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Fig. 16 demonstrates the differences of signals measured in corresponding
pair stations.

The red line of Fig. 16 indicates equality of the signals of the two corre-
sponding stations of a tank pair and has an angle of 45◦ to the S1(S2)-
axis. Hence the distance d of a data point in the plot to this bisector is
d = (S2 − S1) · cos 45◦ = S2−S1√

2
. By normalizing d to the average signal by

dividing it by the mean signal S̄ := S1+S2

2
, the relative signal deviation is

obtained [39] [40] [33]:

∆S

S̄
:=

√
2 · S1 − S2

S1 + S2
. (89)
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Figure 16: Distribution of integrated VEM signals in corresponding pair stations,
plotted from the data set of Sec. 7 without any additional cuts applied.
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Part II

Analysis

7 The data set

The analysis of signal fluctuations in this thesis is performed with Auger SD
data (CDAS format) recorded from October 1st 2006 until April 30th 2008.
The data is available as one file for each month and is stored in a server farm
in Lyon. From this raw data set, events with at least one tank pair triggered
were selected, regardless of having real air showers or not (i.e. no check on
T4 or T5 trigger level) which resulted into 214083 T3 events with at least one
tank pair triggered10. In Tab. 2 all pair stations considered for the creation
of this data set are listed.
If both pair stations had been active at the event time, they were checked for
availability of their integrated VEM traces. If both pair stations exhibited a
signal (VEM trace), the following conditions were requested:

• Both stations had to be tagged as candidates

• Trigger data/information had to be available

• General data (such as integrated signal, rise time, etc.) must have had
been recorded/reconstructed

• Rise time had to be greater than 50 ns

These event preselections were copied to the local server cluster of the High
Energy Physics Department of the University of Siegen. There, non-T4
events were removed from the preselections. The T4 selection criteria were
chosen as follows:

• At least three candidate stations at the beginning of the seed finding

• Usage of Bottom-Up-Selection

• No T5 trigger used

• At least 6 active stations required at the event time

• Rejection of bad periods, i.e. periods where the SD did not work prop-
erly

10For pair tank analysis, the signal of the partner station has to be kept by tagging the
station as “accidental” in the Offline framework (by default, the station is discarded).
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• Removing of lightning events, i.e. signals with certain oscillation pat-
terns that are originated from lightnings

This T4 trigger configuration implements the shower cuts proposed in [40]
on the one hand, on the other hand it makes sure that only real air shower
events are taken into account for the analysis of signal fluctuations.

With these selection criteria, 16425 pair events remained for pair tank analy-
sis providing 29218 samples (corresponds to a yield of approximately
1.8 samples

pair event
).

The official cuts for event selection are separated into shower cuts and tank

cuts. Tank cuts refer to the signal induced in the tank, shower cuts to the
physics requirements of timing or geometry. The following cuts had been
proposed in [40, p4]:

• Tank cuts:

1. All three PMTs have to be reported as OK in both tanks

2. The signal amplitude has to be smaller than 500 VEMpeak

(Speak < 500 VEMpeak)

• Shower cuts:

3. The event has to be successfully reconstructed with three or more
tanks exhibiting a signal (after the removal of random and isolated
stations)

4. The reconstructed core position has to be beyond 200 m from both
tanks to avoid the LDF effect (rc > 200 m)

5. The time difference between the signals in the two tanks has to
be less than 200 ns (∆t < 200 ns)

6. Three (or more) first neighboring tanks must have their trigger
times compatible to a shower front

The cuts 2, 4 and 5 were implemented into the analysis of this thesis man-
ually. Furthermore, a 3 VEM threshold cut was applied additionally, i.e. all
samples where at least one tank of the pair exhibits a signal S < 3 VEM were
discarded. This cut avoids the bias that the T1 and the T2 triggers of the
tanks have not exactly the same trigger threshold and ensures a clean data
set also for very low signals.

The 3 VEM threshold cut together with the cuts 2, 4 and 5 are called addi-

tional cuts in this thesis.
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All relevant values needed for the analysis were written into an ASCII file11.

Many SD events exhibit stations with saturated signals, especially the tanks
that are located near to the the shower core. Up to now, a reliable recov-
ery procedure for saturated signals is still in progress. Therefore, saturated
stations are excluded (besides a few exceptions that will be mentioned ex-
plicitely).

For distances lower than 200 m to the shower axis, deviations due to the LDF
play a significant role. The rc < 200 m cut reduces this influence onto signal
fluctuations.

To be able to compare the influences of all those effects, five different sub
data sets were created; three ones with one single additional cut plus the
3 VEM threshold cut, one with none of the cuts and one dataset with the
combination of all (see Tab. 1).
Most of the analyses in this thesis are performed using the data set with all
additional cuts applied.

Additional cuts applied Remaining samples

No cuts 29218
∆t < 200 ns (incl. 3 VEM threshold cut) 25129
rc > 200 m (incl. 3 VEM threshold cut) 25515

Speak < 500 VEMpeak (incl. 3 VEM threshold cut) 25485
All cuts 24908

Table 1: Remaining pair signal samples of the T4 selection after applying addi-
tional cuts.

Fig. 17 indicates the positions of all tank pairs considered for the creation of
the data set, noted in UTM coordinates12, related to the reference ellipsoid
WGS84 in which the PAO is located.
Fig. 18 is the upper left cutout of Fig. 17 and shows the infill array where the
grid points of the SD array are located at shorter distances (750 m) to each
other. Some stations of the infill array have a third partner tank, building up
triplets. Due to their low interspace, it is difficult to distinguish the specific
stations of the pairs/triplets in the drawing.

11Reading out an ASCII file for the analysis turned out to be extensively faster than
parsing the corresponding ROOT data set created by the EventFileExporter module.

12UTM is a coordinate system that divides the Earth’s surface into slices parallel to
the axis of the Earth. Their projections onto cylinders perpendicular to the axis result in
ellipsoids. Within such an reference ellipsoid, points are determined by planar coordinates
[41].
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Figure 17: Positions of tank pairs and triplets considered in this analysis.
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Figure 18: Infill array with twin (red) and triplet (green) stations.
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pair no. LsId name northing [m] easting [m] altitude [m] commissioned

1 72
688

France
Toune

6115227.7
6115227.1

450615.3
450626.13

1568.47
1568.47

2006-09-22
2004-12-07

2 73
695

Italy
Rosalia

6116519.3
6116518.6

452867.0
452877.97

1548.15
1548.15

2006-08-23
2004-12-09

3 77
707

Chichino
Abelardo

6115225.6
6115225

453625.2
453635.81

1539.56
1539.56

2006-08-23
2004-12-07

4 78
824

Frias
Tatanza

6115224.9
6115225.1

455115.93
455127.27

1522.95
1522.95

2006-10-06
2005-02-18

5 80
669

Romeri
Toribio

6115231.6
6115232.2

452122.2
452132.87

1554.13
1554.13

2006-08-23
2004-12-07

6 82
657

La Plata
Guadalupe

6112630.8
6112626.1

455122.2
455130.42

1514.22
1514.39

2006-09-27
2004-12-21

7 83
736

Louisiana
Feche

6113929.6
6113929.6

454370.75
454381.66

1528.95
1528.95

2006-11-02
2004-12-07

8 87
663

Isidorito
Tromen

6111306.8
6111305.8

452856.65
452867.84

1528.07
1528.07

2006-11-02
2004-10-12

9 89
734

Santa Fe
Constanza

6113929
6113928.6

451367.26
451378.12

1555.97
1555.97

2006-09-14
2004-12-07

10 90
651

Cordoba
La Salinilla

6112631
6112626.9

450619.1
450629.67

1553.46
1553.07

2006-11-01
2004-10-12

11 91
643

San Juan
Borbaran

6112631.9
6112628.1

452118.7
452128.87

1541.04
1541.04

2006-11-02
2004-10-12

12 92
635

Chubut
Hilda

6112630.8
6112628.4

453618.3
453628.69

1528.38
1528.38

2006-11-02
2004-10-12

13 139
186

Dia
Noche

6091848.8
6091846.2

470131.53
470121.29

1394.02
1394.02

2004-01-01
2004-01-01

14 140
185

Moulin
Rouge

6090547.3
6090550

470893.43
470882.79

1391.66
1391.66

2004-01-01
2004-01-01

The following tank pairs are members of triplets

15 71
74

Czech Republic
UCLA

6116537.5
6116528.2

454368.9
454363

1533.49
1533.49

2006-09-01
2006-09-01

16 74
713

UCLA
Stavros

6116528.2
6116527.6

454363
454373.92

1533.49
1533.49

2006-09-01
2004-12-09

17 75
76

Pipi
Lety

6116528.8
6116537.9

451364.8
451371.1

1563.69
1563.69

2006-11-01
2006-11-02

18 76
698

Lety
Pea

6116537.9
6116528.2

451371.1
451376.03

1563.69
1563.69

2006-11-02
2004-12-09

19 79
81

Alpataco
Ruso

6113927.5
6113937

452868.44
452873.72

1542.87
1542.87

2006-09-14
2006-09-14

20 81
119

Ruso
Piuquen

6113937
6091851.6

452873.72
471633.08

1542.87
1391.56

2006-09-14
2004-01-01

21 84
85

CSU
Michigan

6111331.5
6111341.2

454362.06
454367.36

1515.45
1515.45

2006-11-02
2006-09-27

22 85
664

Michigan
El Clarin

6111341.2
6111331.4

454367.36
454372.56

1515.45
1515.45

2006-09-27
2004-10-12

23 86
88

Malbec
Emy

6111331
6111340.2

451365.63
451372.04

1539.77
1539.77

2006-11-02
2006-11-02

24 88
660

Emy
El Cenizo

6111340.2
6111330.4

451372.04
451377.01

1539.77
1539.77

2006-11-02
2004-10-12

25 93
94

Corrientes
Tierra del Fuego

6113943.1
6113933.9

449879.54
449873.65

1568.58
1568.58

2006-11-02
2006-11-02

26 94
710

Tierra del Fuego
Oye

6113933.9
6113933.4

449873.65
449884.73

1568.58
1568.58

2006-11-02
2004-12-06

27 95
96

Santa Cruz
Neuquen

6113947.1
6113935.3

455860.97
455856.6

1512.41
1511.51

2006-10-20
2006-10-20

28 96
918

Neuquen
Alma

6113935.3
6113935.2

455856.6
455867.61

1511.51
1511.51

2006-10-20
2005-04-26

Table 2: Pair stations included in the analysis of this thesis.
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8 Signal strength dependency

Objective of this section is to obtain a reliable model that predicts signal
fluctuations in dependence of the signal itself.

8.1 Link between Poissonian and Gaussian statistics

If we want to obtain the probability of detecting a certain number of particles
that hit a SD tank, we assume that this number is Poissonian distributed.
A Poissonian distribution

P (k) =
µk · e−µ

k!
(90)

returns the probability for obtaining a positive, integer value k for a given
expectation value µ whereas a Gaussian distribution

p(x) =
1√

2πσ2
exp

(
−(x − µ)2

2σ2

)
(91)

is a probability density valid for arbitrary real numbers.

The standard deviation σ of the Poissonian distribution is determined by
its expectation value µ by σ =

√
µ. The main differences between the two

distributions is the fact that (90) can return only positive integer numbers.
Especially for small expectation values, there is an asymmetry of the Pois-
sonian distribution because its median13 is not equal to its expectation value.

For an increasing µ, the Poissonian distribution becomes more and more
symmetric and approximates a Gaussian distribution:

p(k) ≃ 1√
2πµ

exp

(
−(k − µ)2

2µ

)
. (92)

Although this formula is a Gaussian distribution from the mathematical point
of view, it is a one-parameter distribution like (90) with σ =

√
µ. In its

general form, µ and σ of a Gaussian distribution are independent from each
other.

8.2 Zeroth order model

The signal measured in a SD station is caused by a certain integer number of
particles. Therefore, we can expect a Poissonian-like behavior of the signal

13The median is the point of a distribution where exactly one half of the entries is
situated below and the other half above that value.
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uncertainties with σ ≈
√

S.
For an increasing number of particles, the Poissonian distribution becomes a
Gaussian distribution in good approximation.

The average signal deviation can be calculated from the signals of the two
pair tanks by14

〈σ〉 =
1

2
(σ1 + σ2) =

1

2
(
√

S1 +
√

S2) . (93)

Defining a “relative sigma” σrel by

σrel =
S1 − S2√

2 〈σ〉
, (94)

one would expect a Gaussian distribution of signal differences normalized by
their mean deviation, so the width of the Gaussian should be near to 1. The
factor

√
2 in the denominator stems from ∆S = S2−S1√

2
.

Furthermore, the Null Hypothesis implies S1 − S2 ≈ 0, so we expect a mean

of
〈

∆S
〈σ〉

〉
≃ 0.

Fig. 19 shows the result of this zeroth order model. The Gaussian fit returns
a mean of 〈σrel〉 = (−3.3 ± 0.5) · 10−2 and a spread of σ = 0.852 ± 0.005
(χ2/dof = 214.5/34). This implies the assumption that a mere Poissonian
fluctuation model without any additional parameters overestimates the signal
uncertainties with respect to the observed fluctuations. The reason is that
1 VEM does not always correspond to exactly one particle. In average, we
have approximately 1 VEM =̂ 0.64 particles [43, p13]. This conversion factor
from the number of particles to the corresponding signal value measured in
units of VEM will be called pσ from now on. In the following sections, more
sophisticated models for signal fluctuations will be established to determine
pσ.

8.3 Method

Assuming a special statistical distribution of relative signal deviations would
not take into account any systematics that are disregarded by the considered
distribution. This would lead to a bias.
Therefore, the detector accuracy is defined as the RMS of a distribution of
the relative signal deviations (89) [39] [40] [33]:

14The average of the two uncertainties is chosen rather than σ2 = σ1
2 + σ2

2 in this case
because σ1,2 are no statistical fluctuations but functional values of a model.
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Figure 19: The zeroth order model: histogram of σrel with Gaussian fit.

RMS =




(

M∑

i=1

(
∆S

S̄

)

i

2
)

/M −
((

M∑

i=1

(
∆S

S̄

)

i

)
/M

)2


 · M

M − 1
(95)

with M being the number of entries in that histogram. The RMS has an
uncertainty, too, its variance is given by

V

[(σ

S̄

)2
]

=
1

M

(
m4 −

M − 3

M − 1
m2

2

)
(96)

where mi is the i-th central moment (mi =
∑[(

∆S
S̄

)
−
〈(

∆S
S̄

)〉]i
) [40].

In this thesis, signal fluctuations are examined using pair tanks in a similar
way as described in [36] and [40].
A 2-D histogram is filled with the relative signal deviations of all pair samples,
setting the x-axis as S̄ = (S1 + S2)/2 and the y-axis as ∆S/S̄. Then this
histogram is divided into N logarithmic slices of S̄ (i.e. the N slices have
thickness of ∆ log S̄). For each of those N slices, the projection along the
∆S
S̄

-axis is built. From this 1-D histogram the RMS is calculated. The RMS
is considered to be the overall relative signal fluctuation σ

S̄
for that slice:
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(σ

S̄

)

i
:= RMS

{(
∆S

S̄

)

ij

}Mi

j=1

, i = 1 . . .N . (97)

Fig. 20 demonstrates the principle of the procedure for obtaining
(

σ
S̄

)
de-

scribed above.

By calculating the mean of the projection of one slice along the x-axis (that
provides the values of all S̄ within that bin15), the S̄ value corresponding to
the signal fluctuation value in the slice can be obtained.

Finally, the squares of the RMS values of the y-projections (
(

σ
S̄

)2
) and their

corresponding means of the x-projections (S̄) can be drawn into a diagram.

Fig. 20 visualizes the procedure described above. In Fig. 21, an example for
a signal fluctuation plot is shown together with the y-projection histograms
of the individual slices16. For the example, all additonal cuts have been re-
moved. The means

〈
∆S
S̄

〉
, the number of entries and the RMS values of the

projections are listed in Tab. 3. The mean values are ≈ 0 in all distributions
as they have been predicted by the zeroth error model.

Fig. 22 shows the result for
(

σ
S̄

)2
vs. S̄ of the whole data set with the cuts of

Sec. 7 applied individually (together with the 3 VEM threshold cut, except
Fig. 22(a) and Fig. 22(f)). The signal range S̄ has been divided into 19 log-
arithmic bins along the S̄-axis in the range of 1.0 . . . 4601 VEM.

Fig. 22 and 21 are the only exceptions in this section where not all additional
cuts have been implemented.

8.4 Poissonian-like fluctuation model

Assuming a Poissonian-like behavior (σ ∝
√

S̄) of the squared signal fluctu-

ations
(

σ
S̄

)2
, the signal fluctuation model

(σ

S̄

)2

=
pσ

2

S̄
(98)

can be fitted to the data points obtained as described in Sec. 8.3. This
model will be denoted as Poissonian-like model or Poisson fit henceforward.

15The usage of S̄ once as average of the signals of one sample S̄ = (S1 +S2)/2 and once
as mean of all signals in a histogram is ambiguous but the correct meaning should turn
out clearly from the current context.

16The signal fluctuations are always plotted as squared terms to intensify their slope vs.
S̄ for better visibleness.
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Fig. 23 shows the signal fluctuations with all official cuts applied together
with a Poisson fit in the range of 10.0 VEM ≤ S̄ ≤ 80.0 VEM. We obtain

(σ

S̄

)2

=
(0.903 ± 0.013)2

S̄
(χ2/dof = 13.7/4) . (99)

Although the numerator σ and the demoninator S̄ of (97) are not indepen-
dent values that can be handled separately, they are regarded as individual
variables. We often find the equivalent notation

σ2 = pσ
2 · S̄ or even σ = pσ ·

√
S̄ (100)

instead of (98) [48] [40] [46] [39].

�

��� �
�

��

�
��������	
��

Figure 20: Stereoscopic visualization of the calculation of relative signal fluctu-
ations. The S̄-axis is divided into slices with equal widths of ∆ log S̄, each slice
contains one histogram of relative deviations ∆S

S̄
. Here, only one of these his-

tograms is shown. The square of the RMS of the histograms is projected onto the(
σ
S̄

)2
-axis together with the RMS error.
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(b) S̄ = 1.00 . . . 2.15 VEM
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(c) S̄ = 2.15 . . . 4.63 VEM

S
 S∆-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

en
tr

ie
s

1

10

210

(d) S̄ = 4.63 . . . 9.98 VEM
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(e) S̄ = 9.98 . . . 21.48 VEM
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(f) S̄ = 21.48 . . . 46.23 VEM
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(g) S̄ = 46.23 . . . 99.53 VEM
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(h) S̄ = 99.53 . . . 214.3 VEM
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(i) S̄ = 214.3 . . . 461.2 VEM
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(j) S̄ = 461.2 . . . 992.9 VEM
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(k) S̄ = 992.9 . . . 2138 VEM
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(l) S̄ = 2138 . . . 4601 VEM

Figure 21: Distributions of ∆S
S̄

projections for 11 bins in S̄. The resulting signal
fluctuation plot can be seen in the upper left panel. For this example, all additional
cuts have been removed.

For large signals (S̄ & 300 VEM), the fluctuations seem to reach a constant
level. In the official guide-line for SD analysis [43], the fluctuation model
(98) is noted together with an additional “noise constant” pN as
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Bin # Entries bounds [VEM]
〈

∆S
S̄

〉
RMS

{(
∆S
S̄

)
ij

}Mi

j=1

1 173 1.00 . . . 2.15 (−2.3 ± 1.7) · 10−2 0.218 ± 0.012
2 7187 2.15 . . . 4.63 (−3.0 ± 0.3) · 10−2 0.293 ± 0.002
3 10583 4.63 . . . 9.98 (−1.4 ± 0.3) · 10−2 0.330 ± 0.002
4 5678 9.98 . . . 21.48 (−6.6 ± 3.5) · 10−3 0.262 ± 0.002
5 2665 21.48 . . . 46.23 (−7.9 ± 3.4) · 10−3 0.173 ± 0.003
6 1295 46.23 . . . 99.53 (−7.2 ± 3.3) · 10−3 0.117 ± 0.002
7 540 99.53 . . . 214.3 (−1.2 ± 0.3) · 10−2 0.081 ± 0.002
8 249 214.3 . . . 461.2 (−1.3 ± 0.4) · 10−2 0.071 ± 0.003
9 153 461.2 . . . 992.9 (−1.2 ± 0.6) · 10−2 0.070 ± 0.004
10 135 992.9 . . . 2138 (−2.6 ± 0.5) · 10−2 0.056 ± 0.003
11 32 2138 . . . 4601 (−2.4 ± 1.0) · 10−2 0.055 ± 0.007

Table 3: Means and RMS values of the ∆S
S̄

distributions of Fig. 21.

(σ

S̄

)2

=
pσ

2

S̄
+ pN

2 . (101)

The fit of (101) yields (see Fig. 25)

(σ

S̄

)2

=
(0.934 ± 0.008)2

S̄
+ (0.034 ± 0.004)2 (χ2/dof = 42.4/9) . (102)

As we have large signals in that region of constant signal flucutation level,
this effect is more likely originating from saturation and recovery effects than
from noise. Additional analysis would have to be performed to investigate
this behavior for high signals.
Nevertheless, pN makes fitting of the Poissonian-like model possible also for
ranges of large signals.

8.5 The threshold effect

For fluctuation analyses using pair tanks, both of the corresponding tanks
must have been triggered to enable the calculation of ∆S

S̄
.

The trigger levels T1 and T2 of the SD array are installed hardware sided in
the tank electronics. Only signals passing the T2 level are submitted to the
CDAS. Each PMT and tank electronics of each tank can be considered to
react slightly different to the same composition, momentum and number of
particles entering the tank. This bias can be avoided by setting a threshold
artificially which has to be chosen a little larger than the trigger threshold
of the tank electronics.
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(b) 3VEM threshold cut
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(d) rc > 200m distance to shower axis cut
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(e) ∆t < 200 ns timing cut
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(f) all cuts except 3VEM threshold cut

Figure 22: Signal fluctuation plots for different combinations of additional cuts,
drawn in the range of 1.0VEM ≤ S̄ ≤ 4601VEM.

A cutoff level of Sth = 3.0 VEM seems to be suitable to obtain a clean set of
pair tank samples.

As the measured signals in the SD stations fluctuate according to a Poissonian-
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Figure 23: Signal fluctuation plot with Poisson fit (98) in the range 10.0VEM ≤
S̄ ≤ 80.0VEM.

like behavior, there is the probability that at least one of the two pair tanks
does not trigger although the average signal is larger than 3.0 VEM. Those
samples are rejected and not available for the analysis. Fig. 24 illustrates the
threshold effect.

This effect is purely signal strength dependent (assuming σ ∝
√

S̄). On
the one hand, the spread of the Gaussian distribution increases with higher
signals by σ = pσ ·

√
S, on the other hand, the probability of undershooting

the threshold level increases with S̄ approaching the 3.0 VEM limit.

8.5.1 Theoretical model of the threshold effect

The probability of undershooting the threshold level for one single tank is

P (S̄ < Sth) =
1√

2πpσ
2S̄

∫ Sth

−∞
exp

(
−(x − S̄)2

2pσ
2S̄

)
dx . (103)
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Figure 24: Illustration of the 3VEM threshold effect. For a large signal, the
probability of undershooting the 3VEM threshold (light red area) is small (left
panel). When lowering the signal, this probability increases by shifting the expec-
tation value more and more towards the exclusion zone (right panel). The spread
σ of the Gaussian increases with higher signals.

with σ = pσ ·
√

S̄. Because we have to consider the response of two inde-
pendent tanks (the sample is rejected, if either the first tank is below the
threshold or the other one), the overall probability of losing a sample is twice
the error function17. Finally, the probability of not losing a sample is

P̄ (S̄, σ) = 1 − 2P (S̄ < Sth) . (104)

This effect leads to an apparent decrease of signal fluctuations when dimin-
ishing the signal down to Sth because the possible range for fluctuations will
become more and more restricted with lower S̄. This effect can be seen
clearly in Fig. 23 or Fig. 22.

The threshold effect can now be evaluated analytically by

(σ

S̄

)2

=
pσ

2

S̄
· P̄ 2(S̄, σ) . (105)

Using (98), one can obtain σ = pσ ·
√

S̄ from a fit to experimental data.
Therefore, the notation P̄ (S̄, pσ) instead of P̄ (S̄, σ) will be used in future
references.
Fig. 25 demonstrates the good agreement of this theoretical model with ex-
perimental data. In this case, (105) was fitted with an additional noise
constant

17The case that both tanks exhibit signals below the threshold has not to be considered
for S̄ = S1+S2

2
is a boundary condition that prevents both signals being either above or

below S̄ simultaneously.
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(σ

S̄

)2

=
pσ

2

S̄
· P̄ 2(S̄, pσ) + pN

2 (106)

in the range of 3.0 VEM ≤ S̄ ≤ 4601 VEM with the fit result

(σ

S̄

)2

=
(0.933 ± 0.007)2

S̄
· P̄ 2(S̄, 0.933) + (0.037 ± 0.004)2 (107)

(χ2/dof = 58.2/12) .
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Figure 25: Fit of the fluctuation model including theoretical prediction of the
threshold effect with (black curve) and without (red dashed curve) noise constant
and a Poisson fit with noise constant (green dashed curve).

In Fig. 25, also the model with threshold prediction without noise constant
(105) (red dashed curve, fit range 3.0 VEM ≤ S̄ ≤ 80.0 VEM) is drawn. The
fit result is

(σ

S̄

)2

=
(0.952 ± 0.007)2

S̄
· P̄ 2(S̄, 0.952) (108)

(χ2/dof = 59.6/7) .
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8.6 Impact of the fit range onto pσ and pN

When the data set is subdivided, e.g. into bins of zenith angle or distance
to the shower core, it might happen that there are no data points in bins
at the lower or the higher end of the signal range available anymore. For
this reason, the influence of varying the fit range (which is equivalent to the
exclusion of data points) on the Poissonian-like model (101) and the model
including threshold prediction (106) is investigated in this section.

The signal fluctuation plots in the range of 1.0 VEM ≤ S̄ ≤ 4601 VEM are
divided into 19 bins in S̄. Due to the 3.0 VEM threshold cut, the first two
bins do not contain data points. The fit range is set to S0 ≤ S̄ ≤ 4601 VEM
and data points are removed from the fit by gradually increasing S0 from an
initial value of S0 = 2.64 VEM.
The variation of the fit parameters pσ and pN dependent of the number of
data points excluded is given in Tab. 4.

The vanishing of data points in the high end of the signal spectrum can be
compensated by discarding the noise constant pN .

Poissonian model Model with thresh. prediction
NPR S̄0 [VEM] pσ pN pσ pN

0 2.64 — — 0.933 ± 0.007 0.037± 0.004
1 4.12 — — 0.936 ± 0.007 0.034± 0.004
2 6.42 — — 0.935 ± 0.007 0.034± 0.004
3 10.0 0.934 ± 0.008 0.034± 0.004 0.936 ± 0.008 0.034± 0.004
4 15.6 0.912 ± 0.011 0.039± 0.004 0.912 ± 0.011 0.039± 0.004
5 24.3 0.872 ± 0.015 0.045± 0.004 0.872 ± 0.015 0.045± 0.004
6 37.9 0.82 ± 0.02 0.051± 0.004 0.82 ± 0.02 0.051± 0.004

Table 4: Deviation of fit parameters of signal fluctuation models by removing
data points from the lower end (NPR = number of points removed).

Both models return stable fit results when increasing the lower bound of the
fit range. For signal values up to S̄ ≈ 40 VEM, they lead to nearly equal
parameters pσ and pN with equal fit errors.

It can be concluded that for 10.0 VEM . S̄ . 40 VEM both models are
suitable. For extending the fit range below ≈ 10.0 VEM, the model with
threshold prediction has to be used anyway because the Poissonian-like model
is not able to follow the threshold clipping.
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8.7 Correction of signal fluctuations

Despite the fact that signal fluctuations are described sufficiently well with
(105) or (106), there is the possibility of correcting the measured signal fluc-
tuations to the expected level they would have without threshold effect. This
correction can be performed by two different approaches:

1. Deriving a correction function R(S̄) from (105)

2. A Toy MC procedure that simulates the impact of the threshold effect
and the Gaussian-like behavior of the tank response. This approach
had been introduced in [36] and is repeated with higher statistics in
this thesis.

The correction function R(S̄) can be obtained by calculating the ratio of
the theoretical models for signal fluctuations with and without the 3.0 VEM
threshold cut:

R(S̄) =

(
σ/S̄

)2
no thresh.(

σ/S̄
)2
3 VEMthresh.

=
pσ

2

S̄
pσ

2

S̄
· P̄ 2(S̄, σ)

= P̄−2(S̄, σ) . (109)

The corrected data points have uncertainties that are given by

σR
2 = σ∆y

2 + σ∆R
2 + σ∆pσ

2 . (110)

For details on (110), see App. A.

Fig. 26 shows the result of the correction procedure using R(S̄) (blue squares).

The Poissonian-like fluctuation model (98) is fitted to the corrected data
within an extended fit range down to S̄min = 3.0 VEM (blue line of Fig. 26).
The result of the fit is

(σ

S̄

)2

=
(0.933 ± 0.005)2

S̄
(χ2/dof = 14.2/7) . (111)

The green diamonds/dashed line in Fig. 26 are the data points corrected via
the Toy MC procedure and the corresponding Poisson fit (see next section).

8.7.1 Correction via Toy MC

The impact of the threshold effect onto the signal fluctuations also can be
corrected by a Toy MC simulation [36] [40]. The procedure is as follows:

1. Plot the signal spectrum of the measured pair tank samples

2. Fit a power law to the spectrum
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Figure 26: Correction of signal fluctuations using R(S̄) (blue squares) and via
Toy MC procedure (green diamonds) together with Poisson fits (98) in the range
3.0VEM ≤ S̄ ≤ 80VEM. The original data is marked by black points.

3. Take this power law as a probability function and create a random set
of simulated signal values

4. Take each entry of the random set and fluctuate it twice using a Gaus-
sian distribution. The spread of the Gaussian is taken from σ = pσ ·

√
S̄

with pσ being the fit result of (98). This step simulates the response of
the two pair tanks

5. Create two simulated signal spectra from the fluctuated values of the
last step; one with and one without the threshold cut

6. From those two data sets, create two plots S̄ vs.
(

σ
S̄

)2

7. Calculate a correction factor for each S̄ bin

8. Apply the correction factors to the real data fluctuations

The power law Φ(S) = Φ0 · S1
α is fitted in the range

20.0 VEM ≤ S1 ≤ 45.0 VEM18 to the experimental signal spectrum of the
main tanks (see Fig. 27). The fit returns

18The fit range had to be chosen so small because the fit procedure failed to converge
for a larger range.
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Figure 27: Signal spectrum of all pair tank samples. Only the signal of the main
tank (S1) is considered. The thick red line is the fit of a power law in the range
20.0VEM ≤ S1 ≤ 45.0VEM, the dashed thin one indicates the extrapolation to
low signals.

Φ(S) = (11 ± 3) · 104 · S−2.00±0.08 . (112)

From Φ(S), a new histogram containing 1000 bins is filled in the range of
1 VEM ≤ Ssim ≤ 1000 VEM with 30,000 random values generated according
to Φ(S). This procedure simulates the expected signal spectrum.
By taking a value out of the simulated spectrum by random, the detector
response is emulated by fluctuating the obtained signal of the spectrum twice
via a Gaussian distribution. The Gaussian function has been defined for ±5σ
with σ = pσ ·

√
S. pσ is obtained from the Poisson fit (99). From the fluc-

tuated values, the averages S̄sim = (S1,sim + S2,sim)/2 for each pair are stored
and two samples are created, one containing all 30,000 events and a second
one in which both signals have to be above the threshold of 3 VEM. In this
sample with threshold cut applied, 8606 entries remain. Fig. 28 shows the
distributions of the two samples.

From the simulated signal spectrum, two relative signal fluctuation plots are
created, one with and the other one without threshold cut (see Fig. 29). The
blue points indicate the relative signal fluctuations without threshold cut,
the red ones those with 3 VEM threshold cut.
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Figure 28: Simulated signal spectrum with (red shaded) and without (blue gray)
3VEM threshold cutoff.

The correction factors are calculated by dividing the simulated signal fluctua-
tions without threshold cut by those with threshold cut, evaluated separately
for each signal bin. The uncertainties of the corrected data points are put to-
gether by scaling the uncertainties of the data point i with the corresponding
correction factor Ri and by multiplying the data point with the uncertainty
of the correction factor:

(
σMC

i

)2
= Ri

2

[
∆
(σ

S̄

)2

i

]2

+
(σ

S̄

)2

i
(∆Ri)

2 . (113)

∆Ri is given by the statistical errors of the simulated data points of Fig. 29:

(∆Ri)
2 = [∆

(σ

S̄

)2

sim
]2 + [∆

(σ

S̄

)2

sim (3 VEM cut)
]2 . (114)

In Tab. 5, the correction factors obtained by the described Toy MC procedure
and by the correction via R(S̄) are listed together with their uncertainties.

The fit result of (98) to the corrected data points (green) via the Toy MC
procedure in Fig. 26 is

(σ

S̄

)2

=
(0.944 ± 0.005)2

S̄
(χ2/dof = 31.0/7) . (115)
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Figure 29: Signal fluctuation plot obtained from the simulated data set with
(red) and without (blue) threshold cut. The red curve is a fit of the model includ-
ing threshold prediction (105), the blue one the Poissonian-like model (98), both
applied in the range 3.0VEM ≤ S̄sim ≤ 80VEM. In this plot only the relevant
range of 1 ≤ S̄sim ≤ 500VEM is displayed. The binning corresponds to that of
Fig. 23.

Bin # R(S̄) Toy MC
1 no data points no data points
2 no data points no data points
3 12.85 ± 0.12 12.248 ± 0.004
4 2.410 ± 0.003 2.428 ± 0.006
5 1.18706 ± 0.00012 1.200 ± 0.004
6 1.011494 ± 2 · 10−6 1.000 ± 0.004
7 1.000228 ± 4 · 10−9 1.0000 ± 0.003

8 . . . 19 1.0000 ± 10−14 1.0000 ± 0.002

Table 5: Correction factors for
(

σ
S̄

)2
for the method using the correction function

R(S̄) and for the Toy MC method. The uncertainties of the factors for the bins
8 . . . 19 are the maximum errors within that range.

The two methods of correcting the signal fluctuations lead to a very similar
result, the fit parameters of the Poissonian-like fluctuation model are com-
patible to each other within their statistical uncertainties. R(S̄) has larger
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uncertainties for large correction factors than those of the corresponding fac-
tors obtained from the Toy MC method, but the R(S̄) method estimates the
uncertainties of the corrected data points in a more trustable way.

In order to investigate the compatibility of the fluctuation models with the
Toy MC data, the fluctuation model with threshold prediction (105) (red)
is fitted to the red points, the mere Poissonian-like model (98) (blue) to the
blue points, both within a fit range of 3.0 VEM ≤ S̄ ≤ 80 VEM. The fit
results are

pno thresh.
σ = 0.887 ± 0.006 (116)

for the blue line and

p3 VEM thresh.
σ = 0.903 ± 0.013 (117)

for the red curve.

The pσ obtained from the fits are a bit lower than the corresponding fit results
(99) and (108) to real data.

8.8 Conclusions

In this section, four different methods of signal fluctuation analysis have been
presented:

1. Direct fit of a Poissonian-like model

2. Poissonian-like model of signal fluctuations compensated for low signals
using a correction function R(S̄)

3. Poissonian-like model of signal fluctuations compensated for low signals
using a Toy MC correction procedure

4. Analytical model that decribes the threshold effect based on the
Poissonian-like model

All four models can be used together with an additional noise constant pN .

The Toy MC method has two disadvantages:

• The individual correction factors are constant within a whole bin of S̄.
As S̄ of the data point will deviate from the S̄ of the simulated point
within one bin, the correction cannot be exact.
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• It is rather difficult to estimate the uncertainties of the Toy MC cor-
rection reliably.

Generally, the correction of signal fluctuations does not bring any advantages
compared to a direct fit of (105) or (106) to the uncorrected data points. For
these reasons, both correction methods will not be followed in this thesis
anymore.
Nevertheless, the fit of (105) in Fig. 29 is in good agreement with the simu-
lated data points with 3 VEM threshold cut.

The best method is the model including the theoretical prediction of the
threshold effect because it expands the possible fit range down to signals of
S̄min ≥ 3 VEM and will therefore be used preferably in this thesis.
In cases where not enough data points for fits down to S̄ = 3 VEM are
available, the simple Poissonian-like model will be used. Then, the fit range
has to be restricted to S̄min & 10 VEM. Anyway, additional data points for
higher signals can be taken into account by adding the noise constant, either
as a fixed value (e.g. pN = 0.037±0.004 from (107)) or as a free fit parameter.

Besides, it can be concluded that each of the four methods of signal fluctu-
ation analysis might in principle be used as they lead to very similar results
with comparatively low fit uncertainties.

The fit results obtained for the four models presented in this section are
listed in Tab. 6. The features of the two models that avoid a correction of
signal fluctuations and will be used in the following sections of this thesis are
recapitulated in Tab. 7.
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Method pσ pN

Poisson fit (98) 0.903 ± 0.013 —

Poisson fit with
noise constant (101)

0.934 ± 0.008 0.034 ± 0.004

Poisson fit to corrected
data (R(S̄) method)

0.933 ± 0.005 —

Poisson fit to corrected
data (Toy MC method)

0.944 ± 0.005 —

Model incl. threshold
prediction (no noise constant)

0.952 ± 0.007 —

Model incl. threshold
prediction and noise constant

0.933 ± 0.007 0.037 ± 0.004

Table 6: Fit results of the signal fluctuation models presented in Sec. 8.

Method defined by advantages disadvantages

Poisson fit (98) pσ

2

S̄
— Limited fit range

Poisson fit with
noise constant (101)

pσ

2

S̄
+ pN

2
Extended fit range
to higher signals

Lower bound of fit
range restricted

Model incl.
threshold prediction
(105)

pσ

2

S̄
· P̄ 2(S̄, pσ)

Extended fit range
to lower signals

Upper bound of fit
range restricted

Model incl.
threshold prediction
and noise constant
(106)

pσ

2

S̄
·P̄ 2(S̄, pσ)+pN

2 Widest fit range —

Table 7: Comparison of the signal fluctuation models presented in Sec. 8.
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9 Zenith angle dependency

A second order effect of signal fluctuations is the dependency of the zenith
angle of an EAS. This effect is hidden when only considering signal strength
induced fluctuations. The zenith angle dependency will be deconvoluted from
the signal strength induced fluctuations in this section.

9.1 Basics

As described in Sec. 8, the main origin of signal fluctuations is the Poissonian-
like behavior of the number of particles hitting the pair tanks. But actually,
we do not measure single particles but rather continuous signals from PMTs
generated by particles, expressed in units of VEM.

Particles entering the Čerenkov tanks at ground level are mainly muons and
EM particles (electrons/positrons and photons). While EM particles have a
typical kinetic energy of some MeV, muons have energies in the GeV range.
Besides, muons have a smaller energy loss dE/dx than EM particles. For
these reasons, muons will traverse the whole tank, regardless of the length of
passage through the water they have to bridge. The length of passage Lµ is
strongly depending on the zenith angle of the particle.

The correlation between the deposited charge in the PMTs of a Čerenkov
tank and the track length had been investigated by positioning two scintil-
lators at opposite sides of the tank, either one scintillator above the lid and
one below the bottom or at opposite sides of the outer shell [44].
Frome these measurements, a linear dependence between the deposited charge
and the muon track length could be confirmed as well as a linear dependence
of the uncertainty of the charge to its square root [45]. The experimental
results had been verified via Toy MC and a semi-analytical model that de-
scribes the tank geometry exactly [45] [53].

In a simple model, the diameter of the tank can be expanded to infinity.
Then the cylindrical geometry of the tanks does not play a role anymore.
We obtain

Lµ =
h0

cos θ
= h0 · sec θ (118)

for a tank with infinite diameter and height h0. In a more elaborate model
including tank geometry, the track length of muons will depend on the place
where the muon enters the tank and its zenith angle. Regarding the cylin-
drical tank geometry, four different cases can be distinguished:

1. Muons that enter through the top lid and leave through the bottom lid
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2. Muons that enter through the top lid and leave through the outer shell

3. Muons that enter through the outer shell and leave through the bottom
lid (equivalent to case 2.)

4. Muons that enter and leave through the outer shell

Comparing the impact of these four cases onto the mean muon track length,
it can be seen that the first case makes the biggest contribution (see Fig.
30). This case is described exactly by (118). Thus, a simple model for zenith
angle dependency of signal fluctuations based upon (118) is proposed:

pσ(θ) = a + b · sec θ . (119)

Figure 30: Distribution of muon fluxes vs. track length Lµ for the four different
cases of tracks, obtained from the semi-analytical model [45]. It can be seen that
case (a) makes the dominant contribution to the flux.

9.2 Analysis

To obtain the parameters a and b of (119), the data set is divided into 4
logarithmic bins of sec θ in the range of 1.0 ≤ sec θ ≤ 2.2. Fig. 31 shows
the signal fluctuation plots for each bin. Due to the reduced ammount of
entries in each sec θ bin, the number of bins in S̄ in each plot is reduced.
The signal range is restricted to 3.0 VEM ≤ S̄ ≤ 700 VEM. Then, the signal
fluctuation model with threshold prediction without noise constant (105) is
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Color sec θ range pσ 〈sec θ〉
black 1.000 . . . 1.218 0.845 ± 0.007 1.11 ± 0.06
red 1.218 . . . 1.483 0.943 ± 0.010 1.33 ± 0.08

green 1.483 . . . 1.806 1.09 ± 0.02 1.61 ± 0.09
blue 1.806 . . . 2.200 1.211 ± 0.04 1.97 ± 0.11

Table 8: Fit results of pσ(θ) and calculated mean and RMS of sec θ. The colors
correspond to those of Fig. 31.

fitted to each plot.

Besides, the mean and the RMS of all sec θ entries are calculated for each
bin separately (see Tab. 8).
Fig. 32 shows the obtained values of pσ plotted against 〈sec θ〉 and a fit
according to (119). The fit returns

pσ = (0.32 ± 0.04) + (0.47 ± 0.03) · sec θ (χ2/dof = 2.11/2) . (120)

The parameterization of signal fluctuations of the form σ = (a + b · sec θ)
√

S̄
(without noise constant) has been implemented officially in the LDFFinder

module of the Auger Offline framework, taking the official values of a =
0.32 ± 0.09 and b = 0.42 ± 0.07 [48, p6].

9.3 Results

Combining the analyses of Sec. 8 and 9, the central results of this thesis can
be compressed in one formula by

(σ

S̄

)2

= P̄ 2(S̄, pσ (θ))
pσ

2(θ)

S̄
+ (0.039 ± 0.003)2 (121)

with

pσ(θ) = (0.32 ± 0.04) + (0.47 ± 0.03) · sec θ . (122)

The results obtained in this analysis are in good agreement with the values
used for the official event reconstruction. In this thesis, are larger data set
has been considered, reducing the statistical fit uncertainties of a and b of
(119) by a factor of 2.
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Figure 31: Signal fluctuation plots of four sec θ bins with analytical signal fluc-
tuation model (105) in the range of 3.0VEM ≤ S̄ ≤ 700VEM.
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Figure 32: Zenith angle dependency of pσ with fit of (119) in the range of
1.0 ≤ sec θ ≤ 2.2.
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10 Dependency on the distance to the shower

axis

As mentioned in the beginning of Sec. 6, the steep slope of the LDF near
the shower core leads to significant differences of the particle density in the
pair tanks besides differences due the Poissonian fluctuations. This effect is
investigated in this section.

10.1 Basics

The Auger Offline framework does not provide a method for obtaining the
distance to the shower axis, only the distance to the shower core. This had
to be implemented manually.
For a given shower axis â (â is a unity vector), the given position of the
shower core ~c and the position of a station ~s, the distance to the shower axis
rc can be evaluated. First, the segment between the station and the shower
core by can be expressed by

~r1 = ~s − ~c . (123)

Then, there is a segment from the shower core into the direction of the shower
axis that is unknown in length, so it has to be parameterized as straight line

~r2(λ) = λâ . (124)

The distance vector ~d = ~r2 − ~r1 is perpendicular to â, hence

~d(λ) · â = (~r2 − ~r1) · â !
= 0 (125)

⇒ (~s − ~c − λâ) · â (126)

= (~s − ~c) · â − λ = 0 (127)

⇒ λ = (~s − ~c) · â . (128)

With rc = |~d| and the solution for λ, we obtain

rc = |[(~s − ~c) · â] â − ~s + ~c | . (129)

As the range of rc is investigated down to 0 m, the rc < 200 m cut has to be
removed. There are many saturated stations for low distances to the shower
core, so the Speak < 500 VEMpeak saturation cut is removed as well to keep as
much statistics as possible. Without saturation cut, there are 25097 samples
in the rc range of 0 m ≤ rc ≤ 1980 m considered; including the cut, 24902
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Figure 33: Distribution of samples vs. rc without (fawn) and with (red shaded)
500VEMpeak saturation cut.

samples remain. The distribution of entries vs. rc is shown in Fig. 33, indi-
cating that nearly all samples with rc < 200 m exhibit a saturated signal.

A theoretical model for a signal fluctuation dependency on the distance to
the shower axis can be derived from the LDF.
The assumption is that the overall signal fluctuation is the square sum of the
statistical uncertainty σVEM = p0 ·

√
S and an additional uncertainty that is

proportional to the difference of particles due to the influence of the LDF,
the signal uncertainty can be expressed by

σLDF = ∆N(rc) = p0 · ∆S(rc) . (130)

p0 = pσ from Sec. 8 is assumed to be the correct conversion factor from the
number of particles to the corresponding signal in units of VEM. The signal

S(rc) is then proportional to
(

rc

1000 m
· rc+700m

1700 m

)β
, the difference of the signal

∆S(rc) within a small interval of distance ∆rc is then

∆S(rc) =
∂S(rc)

∂rc
∆rc (131)

with
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∂S

∂rc
∝ β ·

(
2rc + 700 m

1000 m · 1700 m

)(
rc

1000 m
· rc + 700 m

1700 m

)β−1

. (132)

Hence we obtain

σ2 = σVEM
2 + σLDF

2

= p0
2 · S + p0

2

(
∂S(rc)

∂rc

)2

(∆rc)
2 . (133)

From this formula we can identify the relative signal fluctuations

(σ

S

)2

=
p0

2

S

(
1 +

1

S

(
∂S(rc)

∂rc

)2

(∆rc)
2

)
(134)

and finally pσ(rc):

pσ(rc) = p0

√

1 +
1

S

(
∂S(rc)

∂rc

)2

(∆rc)2 . (135)

∆rc is assumed to be isotropic in each bin of rc, so it is arguable to set
∆rc = const. The means of the absolute values of ∆rc are plotted in Fig. 34
for confirmation, the fit of a constant returns 〈|∆rc|〉 = (6.24 ± 0.02) m.

Hence the prefactor β of (132) and ∆rc can be merged to a normalization
parameter S0. Setting S = S(rc) as the signal obtained from the LDF, we
can simplify

pσ(rc) = p0

√

1 + S0

(
∂f(rc)

∂rc

)2
f(rc)2β̃−2

f(rc)β̃

= p0

√

1 + S0

(
∂f(rc)

∂rc

)2

f(rc)β̃−2 (136)

with f(rc) = rc

1000 m
rc+700 m
1700 m

and ∂f(rc)
∂rc

= 2rc+700m
100m·1700 m

.

p0 is a constant level of signal fluctuation that is approximated for an increas-
ing rc when the influence of the LDF effect does not play a role anymore. β̃
is expected to be approximately the β that is obtained when inserting the
average 〈sec θ〉 for sec θ in (78)19.

19This can be done because the LDFFinder module is being used with fixed β.
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Figure 34: |∆rc| of the 9 bins in rc with fit of a constant.

10.2 Analysis

In order to study the model (136), the dataset is split into 9 equidistant bins
of rc in the range of 0 m ≤ rc ≤ 1980 m, taking the distance of the first
station of the tank pair as rc. For each bin, a signal fluctuation plot (range
1.0 . . . 4601 VEM) containing 10 bins in S̄ is created. Then the Poissonian-
like model (98) with additional noise constant

(σ

S̄

)2

=
pσ(rc)

2

S̄
+ pN

2

is fitted in the range 10.0 VEM ≤ S̄ ≤ 4601 VEM to the first five sig-
nal fluctuations plots. For the remaining four plots, the analytical model
with threshold prediction incl. noise constant (106) is fitted in the range
3.0 VEM ≤ S̄ ≤ 4601 VEM because for high distances to the shower axis,
smaller signal values can be expected so the impact of the threshold cutoff
cannot be neglected anymore. Besides, for large distances rc, there are no
data points in the range where (98) could be fitted. The result is shown in
Fig. 35.
pN is fixed to pN = 0.037 from (107). The resulting fit values for the pσ(rc)
plotted against 〈rc〉 are shown in Fig. 36, the corresponding fit values are
given in Tab. 9.
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Color rc [m] 〈rc〉 [m] pσ(rc)
black 0 . . . 220 161 1.38 ± 0.12
red 220 . . . 440 362 0.97 ± 0.02

bright green 440 . . . 660 571 0.906 ± 0.010
bright blue 660 . . . 880 769 0.943 ± 0.015

yellow 880 . . . 1100 966 0.95 ± 0.03
pink 1100 . . . 1320 1189 1.07 ± 0.04
aqua 1320 . . . 1540 1416 1.01 ± 0.06
green 1540 . . . 1760 1630 0.98 ± 0.10
blue 1760 . . . 1980 1847 0.73 ± 0.12

Table 9: Binning, 〈rc〉 and fit results for 9 equidistant bins in rc. The colors
correspond to those in Fig. 35.

Then, (136) is fitted to Fig. 36, yielding

p0 = 0.925 ± 0.009 , (137)

S0 = (210 ± 500) VEM and (138)

β̃ = −1.9 ± 0.9 (139)

with χ2/dof = 31.6/7. A constant level of p0 is reached asymptotically, the
value agrees with pσ = 0.934±0.008 of (102) as well as with pσ = 0.933±0.007
of (107).

From (78) and 〈sec θ〉 = 1.3 ± 0.3 (see Sec. 11.1), one obtains

〈β〉 = 0.9 · (1.3 ± 0.3) − 3.3 = −2.1 ± 0.3 , (140)

which agrees with (139).

Although the results of this section are compatible with the assumed model
(136) and the formerly obtained fit results for pσ, it should be mentioned
that fitting the pσ needed for (136) is not robust yet, neither against varying
the number of bins in rc, nor when changing the number of bins of S̄ in each
of the signal fluctuation plots (Fig. 35). It took a lot of trials to find a combi-
nation of binning and an appropriate range of rc where the χ2 minimization
of the fit procedure converged for each pσ fit.
In the range of low rc . 400 m, at least one additional pσ would be necessary
to stabilize the fit result of Fig. 36. A larger amount of data is required to
make the uncertainty model in dependence on the distance to shower axis
more confidential.
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The statistical error of the determination of the shower core is δrc ≈ 50 m [49].
The parameterization of signal fluctuations depending on the distance to the
shower axis is only significant for rc . 400 m. Therefore, using the model only
makes sense for very low distances when the LDF effect becomes dominant.
In the most cases, the model with zenith angle dependency is to be chosen
preferably.
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Figure 35: Signal fluctuation plots for 9 bins in rc.
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Figure 36: Fit of (136) to the pσ(rc) obtained from Fig. 35.
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11 Model checks

In this section, the signal fluctuation model including signal strength and
zenith angle dependency will be checked against the less sophisticated mod-
els (105) and the “zeroth order” model. Furthermore, the model including
zenith angle dependency will be tested for its significance compared to the
uncertainties of signal fluctuations.

11.1 Model with and without zenith angle dependency

The zenith angle model of signal fluctuations of Sec. 9 can be checked against
the signal strengh dependency model that has been obtained in Sec. 8. In
principle, the fit values for pσ in (101) or (106) represent the average 〈pσ〉
over the whole range of occuring zenith angles. Determining the mean value
of the sec θ distribution of all pair samples and inserting this mean value into
(120) should lead to a similar result as in (102) and (107).

Fig. 37 shows the distribution of samples vs. sec θ = 1.0 . . . 5.0 (correspond-
ing to zenith angles of 0◦ to 78.5◦). The mean value is 〈sec θ〉 = 1.3 ± 0.3.
Inserting that mean value into (120), one obtains pσ(〈sec θ〉) = 0.94 ± 0.14
which is in good agreement with the results of (102) and (107).

θsec 
1 1.5 2 2.5 3 3.5 4 4.5 5

en
tr

ie
s

1

10

210

310

410

Figure 37: Distribution of all pair tank samples vs. sec θ (all additional cuts
applied).
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11.2 Zeroth order model

With the parameterization (121), the zeroth order model that introduced
Sec. 8 as motivation can be performed again. The result is shown in Fig. 38.
One obtains a mean of (−4.5±0.7) ·10−2 and a spread of σrel = 1.083±0.005
for the Gaussian fit.

Despite the fact that, with complete fluctuation parametrization, a σrel very
close to 1 is now obtained, the value still deviates more than 15 standard
deviations with respect to σ. This implies that there is either still some
hidden dependency of the signal fluctuation model or the deviations are not
perfectly Gaussian distributed.

Comparing the fit results with the RMS and mean of the histogram (
〈

∆S
S̄

〉
=

(−4.6 ± 0.7) · 10−2, RMS = 1.087± 0.005), there is full compatibility of the
corresponding values.
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Figure 38: Distribution of the corrected zeroth error model σrel with Gaussian
fit.
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11.3 Significance of the model including threshold pre-
diction

Within their fit errors, the fit parameters pσ and pN of (121) should be
compatible with the statistical errors of the data points.

η =

(
σ
S̄

)2
theo

−
(

σ
S̄

)2
exp

σtheo
2 + σexp

2
(141)

compares the difference between the theoretically expected
(

σ
S̄

)2
theo

and the

real fluctuations
(

σ
S̄

)2
exp

to the statistical errors σexp and the fit errors σtheo

of both.

σtheo is given by the uncertainty of pσ which has been evaluated in (163) and
(164) in Sec. 8.7 on the one hand and the fit error of pN according to (101)
on the other hand. As pσ is depending on a, b and sec θ (119), the overall fit
uncertainty of (121) is obtained via error propagation:

σa
2 =

(
∂
(

σ
S̄

)2
theo

∂a

)2

(∆a)2 =

(
∂
(

σ
S̄

)2
theo

∂pσ

∂pσ

∂a

)2

(∆a)2 , (142)

σb
2 =

(
∂
(

σ
S̄

)2
theo

∂b

)2

(∆b)2 =

(
∂
(

σ
S̄

)2
theo

∂pσ

∂pσ

∂b

)2

(∆b)2 (143)

and

σθ
2 =

(
∂
(

σ
S̄

)2
theo

∂(sec θ)

)2

(∆ sec θ)2 =

(
∂
(

σ
S̄

)2
theo

∂pσ

∂pσ

∂(sec θ)

)2

(∆ sec θ)2 . (144)

The values for ∆(sec θ) have been taken from Tab. 8. The impact of ∆pN is
just

σpN

2 =

(
∂
(

σ
S̄

)2
theo

∂pN

)2

(∆pN)2 = (2 pN∆pN )2 . (145)

The overall error of the theoretical uncertainty thus becomes

σtheo
2 = σa

2 + σb
2 + σθ

2 + σpN

2 . (146)

Fig. 39 shows the result of the complete error model (121) in a 2-D plot. The
shape of (106) along the x-axis can as well be seen as a slight slope due to
the sec θ dependency of pσ along the y-axis.
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Fig. 40 shows the measured signal fluctuations for the four bins of sec θ, each
one divided into 9 bins of S̄ (see Fig. 31). The resulting values of η are
displayed in Fig. 41.

Fig. 42 combines the entries of Fig. 41 in a 1-D histogram. Only bins contain-
ing data points have been considered, so the distribution only has 28 entries
instead of 36 being the number of bins (4 · 9 = 36). For a perfect modeliza-
tion of signal fluctuations, one expects a Gaussian-like behavior with mean
of zero and a sigma of 1.
The Gaussian fit yields 〈η〉 = 0.2±0.3 and ση = 1.6±0.3 (χ2/dof = 2.85/2).
〈η〉 is approximately zero within the fit uncertainties. ση > 1 indicates that
some few data points do not fit to the theoretical model within their statis-
tical errors. Besides that there is an asymmetry towards positive η.

Nevertheless, the fit error of ση is quite large so the theoretical model (121) is
still absolutely acceptable. Besides, the Gaussian fit in Fig. 42 is performed
to only a few entries with a large bin width. An additional unbinned fit
should be performed to avoid this bias.
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Figure 39: 2-D function plot of the signal fluctuation model (105) with theoretical
prediction of the 3.0VEM threshold.
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Figure 40: Measured signal fluctuations as a function of log S̄ and log(sec θ).
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12 Impact of signal fluctuations onto energy

estimation

The primary energy of the particle inducing an EAS can be estimated once
the S1000 value is obtained from the LDF fit.

The estimation of the LDF will be influenced by signal uncertainties, regard-
less whether using the χ2 fit procedure or the maximum likelihood method.
In this section, the quantitative influence of signal uncertainties on the esti-
mation of S1000 and the primary energy will be investigated.

First, all T5 events are extracted from the pair tank data set described in Sec.
7, yielding 8884 T5 events. Then the LDFFinder module is slightly modified
to make it possible to control the uncertainties of the station signals and to
choose one of the following parameterizations of signal fluctuations:

1. Original (official) parametrization:

pσ = 0.32 + 0.42 sec θ (147)

2. Parameterization using (120):

pσ = 0.32 + 0.47 sec θ (148)

3. Shifting the signals of the candidate stations upwards/downwards by(
σ
S

)2
= (0.32+0.47·sec θ)2

S
+ (0.039)2 which results in

S+ = S
[
1 +

(σ

S

)]
(upwards) and S− = S

[
1 −

(σ

S

)]
(downwards) .

(149)

The signal uncertainties of the shifted signals are assumed to be

σ± = S± ·
√

pσ
2

S±
+ pN

2 . (150)

For the S− case, negative signal values have to be intercepted (a 3 VEM
threshold cut is not applied in the T5 event selections as we are not
dealing with pair tank analysis here but rather with event reconstruc-
tion). The reason is that a Gaussian distribution is no more a good
approximation for very low signals and allows the occurence of negative
signal values. Instead, Poissonian statistics should have been used but
this is not possible because the signal values are real numbers. Stations
with S− < 0 VEM are therefore set to 0 VEM (silent station).
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The SdEventSelector module selected 4145 events from the T5 event data
set. Four subsets containing all 4145 energies for the four cases mentioned
above (Eofficial, Enew, E+ and E−) were created.

Fig. 43 shows the relative deviations

(
∆E

E

)

fluc

=
Enew − Eofficial

Eofficial
(151)

of the reconstruction of the primary energy with respect to the official/updated
parameters of (120). The mean energy deviation amounts to

〈(
∆E
E

)
fluc

〉
=

(−0.200 ± 0.008)% with a RMS of RMS
(

∆E
E

)
fluc

= (0.497 ± 0.005)%,

It is remarkable that the reconstructed energy is shifted downwards by up
to ≈ 4 % only due to slightly changed fluctuation parameters. This effect is
a systematic influence and will appear by sure. Nevertheless, the maximal
energy deviation caused by the new fluctuation parameters is still far below
the overall systematic uncertainty of energy reconstruction of ≈ 22 % [50].

Fig. 45 and 47 show the relative deviations

(
∆E

E

)

±
=

E± − Enew

Enew
. (152)

The impact onto energy reconstruction by shifting all station signals upwards
or downwards is much more drastic. Lowering the signals in a systematic

manner leads to a mean energy decrease of
〈(

∆E
E

)
−

〉
= (−16.1 ± 0.2)%

(RMS
(

∆E
E

)
fluc

= (10.33 ± 0.11)%). The energy is decreased down to ≈
−95 %.

A similar behavior can be observed for a systematic increase S → S+ (Fig.

45). We obtain
〈(

∆E
E

)
+

〉
= (+15.90±1.77)% and RMS

(
∆E
E

)
fluc

= (10.80±
0.12)%. One event energy is reconstructed ≈ 300 % above the orginal value.

In a further step, eventual dependencies of deviations of energy reconstruc-
tion on primary energy itself are investigated. In Fig. 44 and 46, no clear
dependency can be discovered (With correlation factors of −5.6 % for

(
∆E
E

)
fluc

and −15.2 % for
(

∆E
E

)
+
).

Fig. 48 indicates a slight dependency of
(

∆E
E

)
− linear to primary energy (cor-

relation factor 19.3 %). This systematic (if really existing) might arise from
setting the station signals to zero if S− < 0 VEM. Considering Poissonian
statistics for very low signals instead of Gaussian statistics would avoid the
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problem of signals shifted to the negative, so maybe this effect would then
disappear.

Although the energy deviations obtained by shifting signals seem to be very
significant, it has to be remembered that we are assuming a systematic be-
havior of all candidate stations into the same direction. From the statistical
point of view, the probability that a particular station has its real signal
outside one standard deviation is 1 − 0.683 = 0.317 [42, p20]. This is ap-
proximately one third. The probability that the signal deviates towards one
appointed direction is then p± ≃ 0.5 · 1

3
= 1

6
. Hence the overall probability

pwc for a “worst case” scenario that all N candidate station exhibit signals
shifted into the same direction due to statistical effects is

pwc ≈
(

1

6

)N

. (153)

For a minimum number of N = 3 candidates, this worst case probability be-
comes pwc ≈ 1

108
= 0.9 %. About one in hundred 3-fold events may therefore

exhibit a very large energy deviation.
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Figure 43: Relative deviations of the reconstructed primary energy with the
official parameters of (120) compared to the parameters obtained in this thesis.
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Figure 44: Relative energy deviations vs. energy for the new/official parameters
of (120).
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Figure 45: Relative deviations of the reconstructed primary energy after shifting
the signals of the candidate stations upwards.
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Figure 46: Distribution of the relative energy deviations vs. energy for signals
shifted upwards.
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Figure 47: Relative deviations of the reconstructed primary energy after shifting
the signals of the candidate stations downwards.
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13 Summary

In this thesis, signal fluctuations of the Pierre Auger surface detector array
were investigated by the help of using signals from pair tanks in the range
of 3.0 VEM ≤ S ≤ 4601.4 VEM and covering a range of zenith angles of
1.0 ≤ sec θ ≤ 2.2.

A data set of 16425 T4 air shower events, yielding 29218 pair tank samples,
was created containing Auger data from October 2006 until April 2008. The
six official shower and tank cuts proposed in [40] and four further cuts were
applied to the data.

In a first step, the zeroth order model was considered for the purpose of
motivation, assuming that the signals of the tanks vary only due to Poissonian
statistics. The zeroth order model demonstrated that a Poissonian statistics
overestimates the measured fluctuations:

σrel = 0.852 ± 0.005 (χ2/dof = 214.5/34) .

This result indicated that a conversion factor pσ is required that converts the
measured signal to the corresponding number of particles.

The signal fluctuations
(

σ
S̄

)2
were measured as a function of the average

signal S̄. In the range of 10.0 VEM ≤ S̄ ≤ 80.0 VEM, a model assuming a
Poissonian-like behavior was fitted, yielding

(σ

S̄

)2

=
(0.903 ± 0.013)2

S̄
(χ2/dof = 13.7/4) .

The signal fluctuations exhibit a steep clipping of towards low signals down to
the applied signal threshold of S̄th = 3.0 VEM. This clipping was predicted to
stem from the threshold effect, assuming that the recorded signals fluctuate
around the average signal in a Gaussian-like behavior. A model that describes
the threshold effect (105) was developed in the framework of this thesis. A
fit of this model to the data yielded

(σ

S̄

)2

=
(0.952 ± 0.007)2

S̄
· P̄ 2(S̄, 0.952)

(χ2/dof = 59.6/7) .

Both fluctuation models can be amended by an additional noise constant pN .
Including the noise constant, the fits of the models returned
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• Poissonian-like model:

pσ = 0.934 ± 0.008 , (154)

pN = 0.034 ± 0.004 , (155)

χ2/dof = 42.4/9 . (156)

• Model with prediction of the threshold effect:

pσ = 0.933 ± 0.007 , (157)

pN = 0.037 ± 0.004 , (158)

χ2/dof = 58.2/12 . (159)

Both models are able to describe the data well, but only the model including
the prediction of the threshold effect can take into account data points below
a signal of S̄ . 10 VEM.

The behavior of the fits of both fluctuation models including the noise con-
stant were investigated for the case that data points are excluded from the
lower end of the fit range. Both models showed a consistent behavior.

To test the effect of the 3 VEM threshold cut, a Toy MC simulation was
performed. The Toy MC shows the same behavior as the data, the influence
of the threshold on the simulation can be well described by the model (105)
developed in this thesis.

Furthermore, the dependence of the signal fluctuations of the distance to
the shower core was analyzed. A theoretical model based on statistical con-
siderations and exploiting the LDF was established. It turned out that the
impact of the LDF effect onto the overall signal fluctuations can be neglected
for distances of rc & 400 m.

A zenith angle dependency of the signal fluctuations proportional to sec θ as
proposed in [48] could be confirmed:

(σ

S̄

)2

= P̄ 2(S̄, pσ) · pσ
2

S̄
+ (0.039 ± 0.003)2 ,

pσ(θ) = (0.32 ± 0.04) + (0.47 ± 0.03) · sec θ .

The fit results for the parameters of pσ(θ) are in good agreement with those
published by the Pierre Auger Collaboration [48, p6]. This model is the cen-
tral result of this thesis as it represents the official parameterization of signal
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fluctuations for the SD event reconstruction.

The signal fluctation models were tested and cross-checked. A significance
check was performed by comparing the differences between the theoretical
model (121) of signal fluctuations with the experimental values. All tests
showed that the models of signal fluctuations investigated in this thesis are
consistent.

Finally, the influence of signal fluctuations on the estimation of the pri-
mary energy was examined. The new fit parameters for (121) gained in this
thesis lead to an average drop of the estimation of the primary energy of〈(

∆E
E

)
fluc

〉
= (−0.200 ± 0.008)%. A maximal energy deviation of ≈ −4 %

could be observed.
By shifting all signals of the candidate stations systematically upwards or
downwards by one σ according to (121), an average increase of (10.80±0.12)%
and a decrease of (−16.1 ± 0.2)% respectively could be observed.

13.1 Outlook

As mentioned in this thesis, one problem that still has to be resolved is the
treatment of events with saturated signals in the PMTs. An algorithm to
recover the signals of saturated stations reliably is still being developed. The
latest work on this topic considers two different approaches: The undershoot
method (Variation of the PMT baseline after the signal has attenuated) and
the shape time distribution. The signal uncertainties of both methods had
been analyzed using twin tanks [51]. Furthermore, it is planned to lower the
high voltage (HV) level of the third tank of the triplets to avoid saturations
for very high signals [52]. Diminishing the HV level would decrease the PMT
gain so a higher number of particles could be detected by the station without
being saturated.

By the years, enough statistics will be available to eventually deconvolute
the zenith angle and distance to the shower axis dependencies. Up to now,
one of the two parametrizations has to be chosen alternatively. As pσ(rc)
is dominating only for very low rc, the fluctuation model depending on the
zenith angle should be chosen in the most cases.
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Part III

Appendix

A Calculation of the uncertainties of R(S̄)

The correction function R(S̄) can be obtained by calculating the ratio of the
theoretical models for signal fluctuations with and without 3.0 VEM thresh-
old cut:

R(S̄) =

(
σ/S̄

)2
no thresh.(

σ/S̄
)2
3 VEMthresh.

=
pσ

2

S̄
pσ

2

S̄
· P̄ 2(S̄, σ)

= P̄−2(S̄, σ) . (160)

The correction function implies several uncertainties that have to be calcu-

lated (for easier readability it is y :=
(

σ
S̄

)2
):

• The statistical uncertainties of the uncorrected signal fluctuations have
to be scaled by R(S̄) (→ σ∆y):

σ∆y = R(S̄) · ∆y . (161)

• The statistical uncertainties ∆S of S̄ themselves lead to slightly dif-
ferent values of R(S̄) when shifting S̄ by ±∆S (→ σ∆R). As R(S̄)
is strictly monotonic decreasing, the condition R(S̄ + ∆S) < R(S̄) <
R(S̄ − ∆S) holds.
Due to the difference of R(S̄ + ∆S) 6= R(S̄ − ∆S), the uncertainties
σ∆R are asymmetric. One gets

σ±
∆R = R(S̄) − R(S̄ ± ∆S) · y . (162)

σ∆R
is also considered to be of statistical kind.

• The fit parameter pσ has an uncertainty which has to be taken into
account by error propagation of R(S̄) (second order effect) (→ σ∆pσ

).
The impact of ∆pσ on the uncertainty is

σ∆pσ
=

∣∣∣∣
∂R(S̄)

∂pσ
∆pσ

∣∣∣∣ (163)

with

∂R(S̄)

∂pσ

= −4R(S̄)−3 exp

(
−(Sth − S̄)2

2pσ
2S̄

)(
Sth − S̄√
2πpσ

4S̄

)
. (164)
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∂pσ

The evaluation of ∂R(S̄)
∂pσ

requires a longer calculation, see next section.

The overall uncertainties of the corrected signal fluctuations are

(σR)2 = (σ∆y)
2 + (σ∆R)2 + (σ∆pσ

)2 . (165)

A.1 Evaluation of ∂R(S̄)
∂pσ

In order to obtain σ∆pσ
= ∂R(S̄)

∂pσ
∆pσ, the differentiation ∂R(S̄)

∂pσ
has to be cal-

culated.

From R(S̄) =
(
1 − 2P (S̄, pσ)

)−2
, we initially obtain

∂R(S̄)

∂pσ

= 4R(S̄)−3∂P (S̄, pσ)

∂pσ

. (166)

We evaluate

∂P (S̄, pσ)

∂pσ

=
∂

∂pσ

(
1√

2πpσ
2S̄

∫ Sth

−∞
exp

(
−(x − S̄)2

2pσ
2S̄

)
dx

)
. (167)

The differentiation of the square root term yields

∂

∂pσ

(
1√

2πpσ
2S̄

)
= − 1

pσ
2
√

2πS̄
. (168)

The differentiation of the integral leads to

∂

∂pσ

∫ Sth

−∞
exp

(
−(x − S̄)2

2pσ
2S̄

)
dx (169)

=

∫ Sth

−∞

∂

∂pσ
exp

(
−(x − S̄)2

2pσ
2S̄

)
dx (170)

=

∫ Sth

−∞
exp

(
−(x − S̄)2

2pσ
2S̄

)
∂

∂pσ

(
−(x − S̄)2

2pσ
2S̄

)
dx . (171)

The differentiation of the inner term is

∂

∂pσ

(
−(x − S̄)2

2pσ
2S̄

)
=

(x − S̄)2

pσ
3S̄

. (172)

The resulting integral
∫ Sth

−∞

(
(x−S̄)2

pσ
3S̄

)
exp

(
− (x−S̄)2

2pσ
2S̄

)
dx can be simplified by

substitution of variables. Let
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ξ =
x − S̄√
2S̄pσ

⇒ exp

(
−(x − S̄)2

2pσ
2S̄

)
= exp(−ξ2) . (173)

Then it is

√
2S̄pσ dξ = dx and

(x − S̄)2

pσ
3S̄

=
2

pσ
ξ2 . (174)

Thus we obtain

∫ (
(x − S̄)2

pσ
3S̄

)
exp

(
−(x − S̄)2

2pσ
2S̄

)
dx = 2

√
2S̄

∫
ξ2 exp(−ξ2) dξ . (175)

This integral can be solved exploiting integration by parts:

∫
ξ2 exp(−ξ2) dξ =

∫
ξ · ξ exp(−ξ2) dξ (176)

=
1

2

(∫
exp(−ξ2) dξ − ξ exp(−ξ2)

)
. (177)

We can now reinsert the definition for ξ:

1

2

(∫
exp(−ξ2) dξ − ξ exp(−ξ2)

)
(178)

=
1

2

(
1√

2S̄pσ

∫ Sth

−∞
exp

(
−(x − S̄)2

2pσ
2S̄

)
dx + . . .

. . . −
[

x − S̄√
2S̄pσ

exp

(
−(x − S̄)2

2pσ
2S̄

)]Sth

−∞

)
.

It is

lim
x→−∞

x − S̄√
2S̄pσ

exp

(
−(x − S̄)2

2pσ
2S̄

)
= 0 , (179)

thus it remains

[
x − S̄√
2S̄pσ

exp

(
−(x − S̄)2

2pσ
2S̄

)]Sth

−∞
=

Sth − S̄√
2S̄pσ

exp

(
−(Sth − S̄)2

2pσ
2S̄

)
. (180)

Inserting this into (169) together with (175) yields
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∂pσ

∂

∂pσ

∫ Sth

−∞
exp

(
−(x − S̄)2

2pσ
2S̄

)
dx (181)

=
1

pσ

[∫ Sth

−∞
exp

(
−(x − S̄)2

2pσ
2S̄

)
dx − exp

(
−(Sth − S̄)2

2pσ
2S̄

)(
Sth − S̄

)]

=
1

pσ

[√
2πpσ

2S̄ · P (S̄, pσ) − exp

(
−(Sth − S̄)2

2pσ
2S̄

)(
Sth − S̄

)]
.

With this result combined with (168), we can now evaluate (167). For better
readability, let the square root term of (167) be u and the integral be v.
Then we have

∂(u · v)

∂pσ

=
∂u

∂pσ

· v + u · ∂v

∂pσ

(182)

with

∂u

∂pσ
· v = − 1

pσ
2
√

2πS̄

∫ Sth

−∞
exp

(
−(x − S̄)2

2pσ
2S̄

)
dx (183)

= −
√

2πpσ
2S̄

pσ
2
√

2πS̄
· P (S̄, pσ) = −P (S̄, pσ)

pσ

and

u · ∂v

∂pσ

=
1√

2πpσ
2S̄

· 1

pσ

[√
2πpσ

2S̄ · P (S̄, pσ) + . . . (184)

. . . − exp

(
−(Sth − S̄)2

2pσ
2S̄

)(
Sth − S̄

)]

=
P (S̄, pσ)

pσ

− exp

(
−(Sth − S̄)2

2pσ
2S̄

)(
Sth − S̄√
2πpσ

4S̄

)
.

Finally, we can write

∂P (S̄, pσ)

∂pσ

= − exp

(
−(Sth − S̄)2

2pσ
2S̄

)(
Sth − S̄√
2πpσ

4S̄

)
(185)

and hence

∂R(S̄)

∂pσ
= −4R(S̄)−3 exp

(
−(Sth − S̄)2

2pσ
2S̄

)(
Sth − S̄√
2πpσ

4S̄

)

. (186)
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Michael Scharun for support, relief, relaxation, advise and motivation





Erklärung
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