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CHAPTER 1

Introduction

The best attempt to describe the fundamental building blocks of our universe is currently summarized
in the Standard Model of Particle Physics [1]. This model encompasses elementary particles which
make up matter and mediate the interactions of the electromagnetic, weak and strong forces. In order
to observe and characterize these particles and to test the Standard Model and theories beyond, an
environment of high energy is needed as well as sophisticated detector instrumentation.

The Large Hadron Collider (LHC) is the biggest and most powerful particle collider as of today [2].
The protons in the collider are currently accelerated to a centre-of-mass energy of 13.6 TeV and are
brought to collision at different detectors around the collider. One of the general-purpose detectors
at the LHC, and currently the largest volume particle detector ever constructed, is the ATLAS (A
Toroidal LHC Apparatus) detector [3]. The ATLAS experiment was able to discover the Higgs boson
in 2012 [4], a big missing piece in the Standard Model. Furthermore, the ATLAS experiment performs
precision measurements of the Standard Model particles and their interactions while also searching
for new phenomena, which might add missing pieces in our understanding of the universe.

The signals measured by the different systems of the ATLAS detector have to be reconstructed to
physical particles. Comparing actual detector data to Monte-Carlo simulation events is essential to
most analyses and these simulated events will go through the same reconstruction steps. One such
step is the identification of particles. Quarks pose a unique challenge in this step as they cannot be as
easily identified as electrons or muons for example, because they produce a whole spray of particles,
which interact with and deposit their energy in the detector. This spray of particles is called a jet and
can also be initiated by a gluon or the hadronic decay of a tau lepton. It is not obvious which kind of
particle or which flavour initiated a jet, but for a lot of interesting questions in particle physics flavour
is highly relevant.

Jet—flavour tagging aims to assign a flavour to a jet by exploiting the measured properties of the jet
and the tracks associated to it. A clear distinction between all the different kinds of jets is not realized
at the moment, but the tagger used by the ATLAS collaboration distinguishes between jets initiated
by bottom, charm, lighter flavour quarks, and jets initiated by the hadronic decay of a tau lepton.
Heavy-flavour quark jets, especially b-jets, have characteristic properties that make their identification
relatively easy. That is why flavour tagging started out as b-tagging, as only a distinction between
b-jets and all other jets was made. The characteristic properties of the heavier quark jets can also occur
if a constituent of the jet interacts with the detector material, or a similar secondary phenomenon is
part of the jet. This way jets originating from a lighter flavour quark might mimic the ones originating
from heavier flavours and thus contribute to mistagging, when they contain secondary effects.
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This thesis studies the influence of material interactions and other secondary effects on the ATLAS
flavour tagging effort currently performed with a transformer encoder model [5]. A labelling scheme
to classify the different secondary processes, including material interactions, is devised to perform
these studies and to possibly mitigate the effects of secondaries on mistagging. To this purpose an
additional classification objective is added to the flavour tagging model, which classifies the tracks
inside a jet into the different categories of secondary origin.



CHAPTER 2

Physics and Technical Background

2.1 The Large Hadron Collider

The Large Hadron Collider, depicted in figure 2.1, covers a circumference of 27 km and lies up to
175 m deep below Geneva and its surrounding area. The main focus of the LHC are the proton—proton
collisions, but its programme also includes heavy-ion collisions, mostly consisting of lead ions. It is
the latest addition to the accelerator complex at CERN, where the particles go through separate linear
and circular colliders before finally being stored in the LHC [2].

{liustration Philippe Mouche:

Figure 2.1: Overview of the Large Hadron Collider and its four largest experiments under the Geneva area. [2]
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The particles are grouped together and stored in the ring as bunches. Two beams of multiple
bunches circle the LHC in opposite directions and meet each other at the interaction points, where the
detectors are located. The two beam pipes are held at ultra-high vacuum and the beams are kept on
track by superconducting electromagnets, which bend the particles on the circular trajectory and focus
the particle bunches. Once the quality of a beam is degraded by the collisions and other effects, it is
diverted into a beam dump system as its energy of 350 MJ has an extreme destructive power [2].

Figure 2.2 provides an overview over the different runs of the LHC and of what is planned for the
future decades. In Run 1, with centre-of-mass energies of 7 and 8 TeV, enough data could be gathered
at these energies to reach one of the major goals of the project, the discovery of the Higgs boson. It
was observed both in the ATLAS [4] and CMS [6] experiments. Aside from this important missing
piece of the Standard Model, it was also deemed possible that the LHC might find particles beyond
the Standard Model (e.g. SUSY particles), especially with the higher energies of 13 and 13.6 TeV in
Run 2 and 3.

Although the SUSY particles were not found at these energies, a lot of searches for new particles are
performed at the LHC experiments, including searches for dark matter candidates. Apart from these
searches, the Standard Model, as it currently holds, is investigated by precise measurements of the
properties of known particles, like the Higgs boson or the top quark, or by precise measurements of the
interactions, especially rare processes. Finding a deviation from the Standard Model in these precision
measurements is another gateway to the unanswered questions beyond our current understanding of
the universe. To achieve even more precise measurements, the LHC will enter a High Luminosity
phase, as shown in figure 2.2, further increasing the collision rate and energy to obtain more data.
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Figure 2.2: Overview of the LHC operation so far and of the currently planned upgrades and runs in the High
Luminosity LHC (HL-LHC) phase. [7]
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2.2 The ATLAS Detector

The ATLAS detector shown in figure 2.3 is designed in a cylindrical onion-like manner, so that
particles are stopped or leave a unique signature at different layers according to their type. The
different elements of the detector are either barrel-shaped, concentrically arranged around the beam
pipe, or caps placed at the front or the back of the cylinder shape. It is symmetric in the forward and
backward direction with respect to the interaction point, at which the proton bunches of the LHC are
brought to collision, and it covers nearly the whole solid angle around the interaction point [8].

25m

Tile calorimeters

“ : : LAr hadronic end-cap and
forward calorimeters
Pixel detector \

LAr electromagnetic calorimeters

Toroid magnets
Muon chambers Solenoid magnet | Transition radiation tracker
Semiconductor fracker

Figure 2.3: Cutaway diagram of the ATLAS detector showing the different subsystems. [9]

Surrounding the inner detector is a solenoid magnet providing the 2 T magnetic field B, which
bends the trajectories of charged particles in the tracker with a bending radius r, so that the momentum
p of these particles can be determined via p[GeV/c] = 0.3 - B[T] - r[m]. The magnetic field for the
outer muon system serves the same purpose and is provided by a superconducting toroidal magnet
design, giving the ATLAS detector its name. Besides the magnets and the detectors, the Trigger and
Data Acquisition (TDAQ) system and the Detector Control System (DCS) are also integral parts of the
detector.

2.2.1 The Detector Layers

The inner detector consists of three subsystems, which together provide the tracking, momentum,
and vertexing information. The innermost layer is populated by silicon pixel modules and has the
highest accuracy of 10 x 115 pm2 as it is closest to the interactions [8], with accuracies being noted in
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R-¢ and z. Around the pixel detector are the also semiconductor-based layers of silicon strips (SCT),
which have a lower accuracy of 17 x 580 me as they are further out from the beam pipe [8]. Both
silicon detectors provide hit measurements of radius R, azimuthal angle ¢, and displacement in beam
direction z in the cylindrical coordinates. The outer part of the inner detector, the transition radiation
tracker (TRT), consists of 4 mm straw tubes filled with an Ar and CO, mixture. As the straws are not
subdivided lengthwise, the TRT only provides R and ¢ information, but the high number of straws
leads to around 36 hits per track, whereas the pixel detector and the SCT contribute approximately
3—4 and 8-9 hits per track, respectively. Through transition-radiation photons the TRT additionally
helps with electron identification [8]. In 2014 an additional layer of new pixel modules, the Insertable
B-Layer (IBL), was installed between the beam pipe and the former first layer of the pixel detector
[10].

The calorimeters are densely instrumented detectors, which measure the energies of particles by
absorbing them fully as they manage to contain the showers these particles initiate. The electromagnetic
calorimeter (ECAL) measures the energy of electrons and photons and the hadronic calorimeter
(HCAL) measures the energy of hadrons. The ECAL is placed closer to the beam and is surrounded by
the HCAL as it does not correspond to a full hadronic interaction length 4. The ECAL has a thickness
of approximately 23 radiation lengths X, and the whole calorimeter has a thickness of approximately
10 hadronic interaction lengths A [8]. In the barrel region, the ECAL consists of liquid argon (LAr) as
active detector material and lead as absorber material. The tile calorimeter for the hadronic part of the
barrel consists of steel as absorber material and scintillating tiles as active material. In the end-caps,
both the ECAL and HCAL are based on liquid argon.

The muon spectrometer is the outermost layer of the detector as the muons traverse both the tracker
and the calorimeter systems. It has dedicated chambers for two purposes. One purpose, the precise
tracking of the muons, is realized with the monitored drift tube chambers and the cathode-strip
chambers (multi-wire proportional chambers). The other purpose of the muon system is triggering.
The resistive plate chambers (a gaseous parallel electrode-plate detector) and the thin gap chambers
(also multi-wire proportional chambers) are utilized in the lowest level trigger, L1, so they have to
provide the information on muon tracks very fast. With that, they also provide reliable bunch-crossing
identification with a probability of > 99 % [8].

2.2.2 The Material Distribution of the Detector

The material distribution or geometry is an important consideration for the design and operation of a
detector. Interactions of the particles to be measured with inactive and even with active material of the
detector complicate their reconstruction, so these effects and the material of the detector itself need to
be well understood. Most of the secondary particles in the ATLAS detector are produced by nuclear
interactions of primary particles (promptly produced in the proton—proton collisions) with the detector
material [11]. Hadronic interactions happen between hadrons and nuclei of the material via the strong
force. The other significant effect is the conversion of a photon to a pair of electron and positron, for
which a Coulomb field of e.g. a nucleus needs to be present. This is also called gamma conversion.
Correctly modelling the conversion of photons plays an important role in calibrating the electromag-
netic calorimeters, which measure the energies of electrons and photons [12]. The track reconstruction
efficiency is also very sensitive to these secondary interactions [11]. Studies that quantify the material
distribution of e.g. the tracker can utilize these secondary interactions by reconstructing their vertices
[11]. An example of this is shown in figure 2.4, where the density of the vertices shows the structure
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Figure 2.4: Distribution of hadronic interaction vertex candidates close to the beam pipe. [11]

of the tracker close to the beam line. An overview of the different detector and support layers of the
pixel and strip detectors is provided in table 2.1.

These effects also play a role in the reconstruction of high-level objects based on the track and
energy reconstruction. One example of this, the key part of this work, is the identification of jet flavour.
Section 2.4.1 explains how hadronic interactions and gamma conversions can impact jet—flavour
tagging by mimicking the characteristics often found in heavy-flavour jets. Another example are
searches for new physics looking for the decay vertices of long-lived particles, where regions with a
high material density are vetoed [13].

Table 2.1: Definition of the radial regions of the detector material. The corresponding z region is |z| < 400 mm
for all the radial regions listed. [11]

Radial Region Radial Range [mm] Description

BP 22.5-26.5 beam pipe

IPT 28.5-30.0 inner positioning tube

IBL 30.0-40.0 IBL staves (for photon conversion: IPT+IBL+IST)
IST 41.5-45.0 inner support tube

PIX1 45.0-75.0 first pixel barrel layer

PIX2 83-110 second pixel barrel layer

PIX3 118-145 third pixel barrel layer

PSF 180-225 pixel support frame

PST 225-240 pixel support tube

SCT-ITE 245-265 SCT inner thermal enclosure

SCT1 276-320 first SCT barrel layer

SCT2 347-390 second SCT barrel layer

Gapl 73-83 material gap between PIX1 and PIX2
Gap2 155-185 material gap between PIX3 and PSF
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2.3 Simulation and Reconstruction

2.3.1 General Overview

Monte-Carlo simulation plays a central role in the physics analyses performed by the ATLAS
collaboration and in the whole of particle physics. Without it, the data taken in the detector could not
offer nearly the amount of insight which is granted by the comparison. The simulation of signal and
background processes enables the validation of models, estimation of backgrounds and the extraction
of physical measurements. In the training of flavour-tagging models, the simulation data provides the
training, testing and validation samples, as only in simulation the actual truth information is known.
This enables the usage of supervised learning techniques. The Monte Carlo data is generated in
multiple steps replicating what is happening in the detector [14]. An overview of this is provided in
figure 2.5.

Monte
Carlo

Figure 2.5: The flow of real detector data and Monte-Carlo simulation data up to the publication of a paper in
the ATLAS collaboration. The coloured legend indicates at which computing level the different steps take place.
[15]

The Monte-Carlo simulation starts with the event generation (referred to as generation). There are
multiple generators in use describing the high energy collisions of the protons in the LHC. These
describe the particles as four-momenta and handle their interactions and decays to model the physics
processes that are intended to be studied. While creating an event, these generators also decide
which particles are considered stable in the sense of them not decaying immediately and thereby
travelling through the detector. After an event has been generated, the detector simulation (referred to
as simulation) models how the stable particles pass through the detector and interact with its active
and inactive material as described in section 2.3.2. For this purpose either Geant4 [16] is used or
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AtlFast3 [17], which is less detailed, but faster than full simulations with Geant4. The hits in the
detector systems provided by the simulation of the particle interactions with the detector can then be
digitized. In the digitization the response of the detector systems to these interactions is emulated,
noise is added, and the first level trigger is also simulated. After this step, the simulated data has the
same format as real detector data and henceforth the same reconstruction can be applied to both. The
reconstruction and derivation then reconstruct the real or simulated detector data into objects like
tracks and jets and furthermore identify particles when possible, so that the actual physics process
initiating the event can be studied. The data formats from both reconstructing actual data or simulation
data after the digitization are ROOT files called Analysis Object Data (AOD), which become Derived
AOD (DAOD) after derivation, but are still in the same format.

A visualization of the signatures left by different particles in the detector is shown in figure 2.6. The
inner detector measures the tracks of charged particles. Electrons and photons initiate showers in the
electromagnetic calorimeters, which are then absorbed to measure the total energy. Muons are able to
traverse the whole detector, so the inner detector measures a track as well as the designated muon
detectors. Neutrinos do not interact with the detector, because they only interact via the weak force
and rarely. They can only be reconstructed by the missing energy in the transverse plane as due to
conservation of momentum the total momentum in the transverse plane is approximately zero. In the
case of more than one neutrino present in the event, an exact reconstruction is therefore not possible
without further assumptions. Tau leptons can be identified via their hadronic decays, so they leave a
track in the inner systems, and showers in the electromagnetic and hadronic calorimeters. The quarks
produced in the elementary process do not traverse the detector, because quarks do not exist in an
unbound state long enough. The quarks form bound states in a process called hadronization. One
quark from the primary interaction produces multiple hadrons traversing the detector as a cone-shaped
spray, a jet. These jets contain charged and neutral hadrons measured primarily in the HCAL, but also
photons measured in the ECAL. While the identification and reconstruction of other particles exploit
these differences in signatures, it is not trivial to differentiate which kind of particle initiated the jet, a
gluon, the hadronic decay of a tau lepton, or the different flavours of quarks. To identify which kind of
particle initiated a jet is exactly the task of flavour tagging, which will be discussed in section 2.4.
How the jets are reconstructed is described in section 2.3.3 and how the tracks are reconstructed is
described in section 2.3.4.

IDET ECAL HCAL MuDET

v

eams

Figure 2.6: Diagram showing the signatures of different particles in the different detector systems of a particle
detector. Dashed lines indicate that a particle does not interact with this part of the detector. [18]
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2.3.2 Detector Simulation with Geant

The standard ATLAS simulation heavily builds on Geant4, which provides physics models and the
infrastructure to transport particles through a geometry. The geometry of the ATLAS detector is
constructed in the Geant4 format. But not only are the models and parameters of Geant4 chosen
to optimally fit the ATLAS detector, there is also an extensive framework build around Geant4 to
integrate the detector simulation into the rest of the ATLAS framework. Particle scoring, the detecting
and storing of data from a particle passing through the detector, is done in Athena, which is the
ATLAS software framework managing almost all ATLAS workflows. Each subsystem of the detector
has its scoring tailored to its own performance. The simulated interactions of the particles manipulate
or add to the Monte Carlo truth record, which is already defined during generation. The description of
the simulation is based on Ref. [14].

Due to the sheer size of the ATLAS detector and the amount of particles per event, the abundance of
secondary tracks produced in the detector simulation is too high. To select only interactions relevant
to the studied physics there are strategies put into place, containing rules about which interactions
to save. Most of these strategies are applied in the inner detector, which even with these rulings in
place makes up the majority of the required file size. The inner detector strategies limit the storage
needs of most processes like bremsstrahlung, photon conversion, ionization, hadronic interactions and
decays by requiring the energy of the particle initiating that process to be above 500 MeV. There is
one strategy for the calorimeter, only storing muon bremsstrahlung vertices if the primary muon has
an energy above 1 GeV and the generated photon is above 500 MeV. When these criteria are satisfied,
the incoming particle, outgoing particles, step information and the vertex are included in the truth
record. Step information refers to how the particles are transported through the geometry model
numerically via a stepping algorithm optimized in its parameters to particle type, energy and position
in the detector. Besides the above mentioned strategies, other methods also limit the computational
overhead. One example is the instant removal of neutrinos as they would require several thousand
steps to leave the detector while practically never interacting. Another one are the applied range cuts,
which check the expected range of a produced secondary particle beforehand and, if this range is
smaller than the cut value, deposit the energy of the secondary particle at the end of the next step
of the primary particle. There are a lot more considerations for an effective detector simulation in
ATLAS concerning both computational resources and accurate modelling, detailed in Ref. [14].

The models describing the physics of particles interacting with material are often limited to a
specific type of particle and energy range. Geant4 combines these models describing various scenarios
into a few standard physics lists. The ATLAS collaboration only uses these physics lists provided by
the Geant4 collaboration to ensure reproducibility of the results and the use of validated combinations
of models, except for transition radiation, which is a crucial part of the tracking and therefore added to
the physics lists in use [19]. ATLAS uses the QGSP_BERT, QGSP_EMYV, and QGSP_BERT_HP
lists, the first being used in the detector simulation production after 2008, the second before 2008 and
the third being used for special neutron fluence studies. They contain models like the Quark-Gluon
String Precompound model (QGSP) and the Bertini intranuclear cascade model (BERT) for hadronic
physics, which give the lists their names. More detailed information on these lists can be found in
the Geant4 documentation [20]. Different lists were studied for the ATLAS detector and the choice
which to use was made based on how they agree with data. In this study, the following processes are
of interest: Hadronic interactions between hadrons and the nuclei of the detector material, gamma
conversions into an electron—positron pair in the presence of material, and the decay of long-lived
hadrons like K(S) and A.

10
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The detector simulation outputs a hits file including some metadata describing the simulation, the
requested truth information, and a collection of hits in each subdetector. Each subdetector selects,
processes and records these hits consisting of energy deposited at a certain position and time. The next
step in the ATLAS simulation infrastructure is the conversion of these hits into the detector response
by the digitization software.

2.3.3 Jet Reconstruction

Quarks or gluons produced in the interaction of a proton—proton collision initiate a collimated shower
of hadrons in the detector. The properties of the elementary particles taking part in the primary
interaction are inferred from the properties of the jets, which are reconstructed out of the signatures
these showers leave in the detector systems. Figure 2.7 shows how a single parton (quark or gluon) of
the primary interaction results in a jet of particles, which are measured by the tracker (if charged) and
are then absorbed by the calorimeter systems.

\ Particle Jet Energy depositions
P in calorimeters

Figure 2.7: Schematic of the different levels of a jet starting as a parton (either quark or gluon), turning into a
particle jet of mostly hadrons and manifesting in the detector by the energy deposits in the calorimeter. [21]

The reconstruction of jets begins with the formation of topological clusters from calorimeter signals
of connected detector cells, described in Ref. [22]. These topo-clusters try to describe the energy
deposition from particle showers in the calorimeter, but they usually do not contain the response to a
single particle. They can contain either the full or partial response to a single particle or to multiple
particles. The central observable for the clustering process is the cell signal significance defined as

EEM
EM 11
gcell = ENTB (2.1)

Unoise, cell

with EL)l being the cell signal and oy being the expected noise in this cell, both measured at

the electromagnetic (EM) energy scale. Cells with a signal significance larger than a parameter S
(default S = 4) act as a seed for the proto-cluster. To these proto-clusters, their neighbours with a
signal significance larger than parameter P (default P = 0) are added, and should they have a signal
significance larger than N (default N = 2) their respective neighbours are also considered to be added.
With this algorithm, the clusters are grown by including the neighbouring cells, which are defined
as adjacent cells in the same layer or cells sharing a partial overlap in (17,¢) in adjacent layers. The
proto-clusters obtained through this method can become too large to provide a good measurement

11
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of the energy, because proto-clusters from different seeds can be merged in the formation process.
Thus, after the merging, the clusters are split between signal peaks in a way that one cell can only
be shared by two clusters. The resulting topo-clusters of both calorimeters can then be used for the
reconstruction of electrons, photons, missing energy and jets.

The majority of ATLAS analyses in Run 1 of the LHC used jets built from topo-clusters [23].
But these jets do not exactly contain the energy of the particle produced in the primary interaction.
One main reason for this is the non-compensating design of the ATLAS detector [8], which means
that the energy of electrons and photons are measured accurately at the electromagnetic scale, but
hadronic showers give a lower signal than the electromagnetic ones at the same energy. Another large
contribution is pile-up. Due to the high luminosity at the LHC there are multiple interactions per
bunch crossing, not only the hard-scatter interaction of interest. Additional proton—proton collisions
in the same bunch crossing (in-time pile-up) or from other bunch crossings (out-of-time pile-up) leave
remnant signal in the calorimeter cells. The jets have to be calibrated to parton level with a jet energy
scale (JES) correction factor [24]. At the end of Run 1, it was found that taking the tracks associated
to the jet into account improved the jet resolution [24].

Particle flow introduces a method to combine the measurements of the tracker and calorimeter, such
that the jet is reconstructed from a collection of particle-flow objects and not only the topo-clusters.
Utilizing the tracks has the advantages of an improved angular resolution for single charged particles,
an improved momentum resolution for low-energy charged particles and an extended acceptance of
softer particles, and the advantage of including low momentum particles, which are swept out of
the jet cone before reaching the calorimeter [23]. Additionally, the signal of tracks coming from
pile-up vertices instead of the primary vertex can be rejected. Thus, the tracker information on charged
particles complements the ability of the calorimeters to reconstruct neutral and charged particles.
To avoid the double counting of overlapping momentum measurements of the tracker and energy
measurements of the calorimeter, the particle flow algorithm subtracts energy from the respective
cells in the calorimeter.

The particle flow algorithm is outlined in figure 2.8. The algorithm uses topo-clusters and tracks,
which must pass stringent quality criteria [23]. Starting from the largest transverse momentum pr,
tracks are matched to a given topo-cluster. The track momentum and the topo-cluster position are
used to calculate the expected energy of the particle which created the track. Then the algorithm
computes the probability that the particle deposited its energy in more than one topo-cluster and adds
these clusters to the consideration. From these topo-clusters, the expected energy of the track particle
is subtracted cell by cell and if the remaining energy in the track and topo-cluster system matches the
expected energy, the remnants of the topo-cluster are removed. In the end, the algorithm provides a
list of tracks and a list of both the modified and unmodified topo-clusters, which together are called
particle-flow objects [23].
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Clusters Clusters
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Matched 7] e | |
Cluster d 7 i
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é > e Lo > iModified 7
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-~ nchange:
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Figure 2.8: Flow diagram of the particle flow algorithm. [23]
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2.3 Simulation and Reconstruction

Once the constituent objects are built, the jets have to be reconstructed. Important considerations
for jet reconstruction are the infrared and collinear safety, which guarantee that either soft gluon
emission (infrared) or the splitting of two particles moving in nearly the same direction (collinear) do
not change the jet structure. To obtain jet definitions, which are stable and can be compared to theory
calculations, the shape of the jets should not be influenced by soft radiation. One such algorithm, used
with particle-flow objects as inputs in the jet reconstruction of ATLAS flavour tagging [25], is the
anti-k, jet clustering algorithm, which is described in detail in Ref. [26]. The basic quantities used by
these algorithms are the distances d;; between entities i and j and the distances d; g between the entity
i and the beam. These distances are defined as

2
d;; = min(k>?, kf}’.’)% :

; (2.2)

2p
ki s

dp= (2.3)

where k,; is the transverse momentum of particle i, Afj is defined as A?j =(y; — yj)2 +(o; — ¢j)2,
and y; and ¢; are the rapidity and azimuth of particle i, respectively. Aside from these observables,
two parameters control this algorithm. The radius parameter R, also used by other jet reconstruction
algorithms, can be thought of as the jet radius. The parameter p was added to govern the relative power
of the energy versus geometrical (A,;;) scales with the anti-k, algorithm using a value of p = —1. For
p =1 the inclusive k, algorithm is recovered and for p = 0 it corresponds to the Cambridge/Aachen
algorithm. The anti-k, algorithm was an addition to sequential recombination jet algorithms as the two
above, and improved on criteria including the infrared and collinear safety. In figure 2.9, a collection
of jet reconstruction algorithms is compared on an event with few well separated hard particles and
many soft particles at parton level. Coloured regions indicate where the uniformly distributed ghosts
are clustered into a jet. In this context ghosts are artificial extremely soft particles, which do not affect
the jet reconstruction, but are included to illustrate the regions assigned to a jet.

With the anti-k, algorithm, hard particles accumulate soft ones long before the soft particles cluster
together. Without hard neighbours within 2R, a hard particle will result in a perfectly conical jet
of radius R gathering all soft particles therein. Should two hard particles be within R < A, < 2R,
the jets will not be perfectly conical. In the case of one hard particle having a significantly higher
transverse momentum, the other jet will miss the overlapping part. For equal transverse momenta,
the cones would be divided by a straight line and for approximately equal momenta both cones will
be clipped. Two hard particles with A}, < R will cluster into the same jet. Should one transverse
momentum be significantly larger, the jet will be conical, centred on the particle with the larger
momentum, but should the momenta be roughly equal a more complex structure arises with a union of
cones with a radius smaller than R around the hard particles plus a cone of radius R centred on the final
jet. In figure 2.9 the key feature of the anti-k, algorithm can be seen, being resilient with respect to soft
radiation, but flexible with respect to hard radiation. In comparison, the k, and Cambridge/Aachen
algorithms show jagged borders sensitive to the soft particles, because they adapt more to the soft
radiation. The SISCone algorithm yields regular single-particle jets, but the composite jets vary
more in shape. Apart from these observations, there are also quantitative properties, which show the
desirable behaviour of the anti-k, algorithm related to the area, resummation, computing time and
other more specific parameters. A more detailed description of these quantitative properties is found
in Ref. [26].
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Figure 2.9: A comparison of the k,, Cambridge/Aachen, SISCone and anti-k, jet reconstruction algorithms at
parton level example data containing few hard particles and many ghosts. [26]

The jets used in this study on flavour tagging are reconstructed from particle flow objects using the
anti-k, algorithm with a radius parameter of R = 0.4 and a jet energy scale calibration as described
in Ref. [24]. Furthermore, all jets must have a pseudorapidity || < 2.5 and transverse momentum
pr > 20GeV, while jets with p < 60 GeV and || < 2.4 must pass the tight working point of the Jet
Vertex Tagger algorithm to suppress pileup [25]. The truth jet—flavour labels are assigned to a jet
according to the truth hadrons present within AR(hadron, jet) < .3 of the jet axis [25]. If a b-hadron
is present, the jet is labelled as a b-jet. If a c-hadron is present and no b-hadron, the jet is labelled as a
c-jet. In the absence of both a b- or c-hadron, but with a 7-lepton present, it is labelled as a 7-jet. The
remaining jets are labelled as light-jets.

2.3.4 Track Reconstruction and Association

Tracks are the trajectories of charged particles detected by the inner systems of the ATLAS detector.
Due to the magnetic field the charged particles travel along a helical path shown in figure 2.10(a), that
can be parameterized by five quantities. The transverse and longitudinal impact parameters d,, and z,
are the distances of the point of the closest approach to the reference point, which is the averaged
position of the proton—proton collisions. This point also serves for the determination of the azimuthal
angle ¢ and the polar angle 6 as well as the momentum p of the track. The momentum alone is
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2.3 Simulation and Reconstruction

not a parameter, but rather the charge divided by the magnitude of momentum ¢/p. The figure also
shows the coordinate system, in which the z-axis lays along the beam line, the x-axis points from the
interaction point to the centre of the LHC ring, and the y-axis points upward [25].
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(a) Diagram of the global track parameters d,y, z, ¢, 6, (b) Schematic of the hits left by a charged particle in
and ¢g/p in the ATLAS coordinate system. [27] the pixel, strip and TRT detectors. [28]

Figure 2.10: Parameterization of a track in the ATLAS coordinate system and depiction of the hits left by a
track in the inner detector.

Tracks are reconstructed from the hits in the inner detector tracker systems, the pixel detector, the
SCT, and the TRT, as shown in figure 2.10(b). Signals in the pixel and SCT detectors are grouped
into clusters, which are then turned into space-points containing the three-dimensional measurement
of a charged particle passing. The track reconstruction starts with the finding of seeds, triplets of
space points in the pixel or SCT detector, which have to meet requirements for momentum and impact
parameter. These candidates are then expanded to roads, along which compatible clusters are searched
for in the other sensors of the silicon part of the tracker. Then the actual trajectory is constructed
using a combinatorial Kalman filter [29]. With the track candidates found, overlaps between them and
combinations of unrelated cluster (fake tracks), have to be resolved. In the ambiguity resolution, the
tracks are assigned a quality. Tracks of lower quality sharing hits with higher quality ones are rejected.
But some clusters can be assigned to multiple tracks as there can be topologies denser than the
separation power of the sensors. To obtain a high-precision estimate of the track parameters a /\/2 fitis
performed. After being fit with the silicon systems, the tracks can be extended into the TRT. They are
fit again with a global )(2 fit as this can provide additional measurements on the track, improving the
momentum resolution and adding information for particle identification with the transition radiation
effect. If the quality of the fit decreases with the TRT extension, e.g. by too many TRT outliers being
present, the extension is rejected. This is referred to as the “inside-out” pass, which is optimized for
particles produced in the primary proton—proton interactions.

The “outside-in” pass follows a similar scheme on the hits not included in the first, but unlike the
“inside-out” it is performed starting with hits in the TRT, and it is only performed in regions of interest

15
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defined by energy deposits in the electromagnetic calorimeter. Seeds of two space-points are then
constructed near these TRT regions and the same road search, Kalman filter, ambiguity resolving and
/\(2 fit is applied. This pass increases the acceptance on shorter tracks of particles produced further out
from the beam line, e.g. electrons from gamma conversion [30].

Utilizing track information is crucial in the modern high-performing jet—flavour taggers [31]. There
are selection criteria applied on possible track candidates, e.g. on their transverse momentum p or
how many hits they left in the silicon part of the detector [25], before they are associated to a jet.
There are multiple ways to associate tracks with a jet, one example being the AR association used in
ATLAS flavour tagging. The angular distance AR is defined as

AR = /(&) + (A¢)*, (2.4)

with the pseudorapidity n = — Intan(6/2). Tracks within this distance around the jet axis are associated
with this jet. Should multiple associations be possible, the track is associated to the jet with the
smallest AR. The width of AR varies with py of the jet, the maximum being AR = 0.45 for jets with
pt = 20GeV and the minimum being AR =~ 0.25 for jets with pp > 200 GeV [25].

A selected set of good quality tracks is also used in vertex reconstruction [32]. A vertex is the
reconstructed position at which multiple particle tracks originate. There are multiple proton—proton
interactions in a bunch crossing, but usually there is only one interesting interaction referred to as the
hard-scatter, often having the largest transverse momentum. To isolate this interaction from the other
interactions called pile-up and reconstruct it correctly, the primary vertex of this interaction is found
on the beam line and reconstructed. Furthermore, the hard-scatter interaction can lead to secondary
vertices either from the decay of particles, which are so long-lived that they decay significantly far
away from the primary vertex, or from material interactions. As the flavour-tagging models studied in
this work do not rely on reconstructed vertices explicitly, vertex reconstruction is not discussed in
further detail.

2.4 Flavour Tagging

2.4.1 Introduction to ATLAS Flavour Tagging

Jet—flavour tagging is the effort to identify the type of particle from which a jet originated. Jets can be
initiated by the hadronic decay of a 7-lepton, a gluon decay, or a decay of the different quark flavours,
except for top quarks as they decay before they hadronize. Usually only the heaviest quark flavours (b
and c) are identified, as a complete separation of the different incident particles is quite difficult. The
identification of jets originating from heavy-flavour quarks is a very helpful asset to a lot of interesting
physics analyses [8]. The top quark, the heaviest elementary particles, almost exclusively decays into
a bottom quark and a W Boson, so the precision measurements around the top quark or other kind of
physics utilizing the abundance of top quarks at the LHC benefit a lot from good b-tagging. As the
coupling of the Higgs boson depends on the particle mass, it frequently decays into heavy-flavour
quarks, so the identification of heavy-flavour quarks provides access to Higgs decays with a large
branching ratio. As the LHC collides protons with protons, many jets are produced by Quantum
ChromoDynamics (QCD) processes, which are not related to the interaction being studied. Good
flavour tagging can also help in mitigating these backgrounds [31].
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2.4 Flavour Tagging

For a long time, b-tagging was the primary focus of flavour tagging, because of their significance
in processes mentioned and because differentiating only b-jets from all other jets is easier than
differentiating between b-jets, c-jets and all other jets, for example. The basic principles of flavour-
tagging algorithms are described in Ref. [31]. The qualities of a b-jet, which can be exploited for
the separation, are a result of the relatively long lifetime of the B mesons. Figure 2.11 shows how
this long lifetime leads to the hadrons containing a b-quark decaying at a significant distance from
the primary vertex. This can manifest itself in a secondary vertex and subsequently in larger impact
parameters of the tracks, which originate from the decay of the hadron containing a b. The same holds
true, though to a lesser extent, for the hadrons containing c-quarks. Since hadrons containing a b
often decay into hadrons containing a c, there might even be an identifiable tertiary vertex inside the
b-jet. Heavy-flavour jets also tend to have more tracks than lighter flavoured ones.

—3  tracks b jet
------ b hadron \
------ impact

parameter

285 secondary
/ vertex

‘(’7 - primary vertex

Figure 2.11: A diagram of the characteristics of a b-jet set apart from light jets by the presence of a secondary
vertex and large impact parameters of the tracks. [33]

Several flavour-tagging algorithms are based on these features, either relying on the impact
parameters of the associated tracks or trying to reconstruct secondary vertices. The IP2D tagger used
by the ATLAS collaboration makes use of the transverse impact parameter significance d,/ T4, and
the IP3D additionally includes the longitudinal impact parameter significance z;, sin 6/ O sing- The
log-likelihood ratio discriminants of the algorithms are used as inputs for high-level taggers. Similarly,
the outputs of the secondary-vertex-tagging algorithm SV1, which reconstructs a single secondary
vertex per jet, are used in high-level taggers. These outputs describe the secondary vertex, e.g. decay
length and invariant mass, and are obtained by iterative )(2 tests on the track-to-vertex matching. These
low-level algorithms also contain vetoes to reject secondary particles from K(S) or A decays, gamma
conversions, and hadronic interactions with the detector material, because they share the characteristic
high impact parameters and secondary vertices of b- and c-hadron decays as shown in figure 2.11. In
SV1 this is done by rejecting two-track vertices compatible with K. 3 or A decays and only accepting
vertices with an invariant mass less than 6 GeV. This rejection and other aspects were supplemented
with the JetFitter algorithm, which tries to reconstruct the full »-hadron decay chain by exploiting the
topological structure of b- and c-hadron decays inside the jet. The presence of soft leptons in the jet,
which arise from semileptonic decays of b- and c-hadrons, is also an additional handle to discriminate
heavy-flavour jets, but these jets only account for 20 % or 10 % of b- or c-hadron decays [34].
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Chapter 2 Physics and Technical Background

These algorithms, based on statistical interference, were expanded upon with trainable machine
learning models. The RNNIP recurrent neural network tagger [31] could overcome the challenge of
IP-based b-taggers, which had to make the assumption that the properties of the tracks in a jet are
independent of the other tracks. The emergence of multiple tracks with large impact parameters out of
a secondary or tertiary vertex in c- or b-hadron decays intrinsically correlates the properties of these
tracks. The RNNIP algorithm, just by its recurrent nature, can learn the sequential dependencies of
the tracks, of which it can take a variable amount. The model is fed similar quantities per track as
used by the before mentioned algorithms, e.g. impact—parameter significances and distance between
track and jet axis, and its outputs correspond to the probabilities of the jet being a b-jet, c-jet or light
jet. Thus, with RNNIP the simultaneous tagging of b- and c-jets is already possible. With the output
probabilities for the different flavours p;,, p., pyign and the c-jet fraction f,. a b-tagging discriminant
function is defined as

Py
fe pe+(1- fc)plight '
The c-jet fraction is not the exact relative amount of c-jets in a given sample, but rather a parameter,

which governs the relative importance of c-jet and light jet rejection [31]. A discriminant for c-tagging
is constructed analogously by switching p;, and p_. and introducing a fraction parameter for b-jets f,.

Dgnnip = log (2.5)

The flavour-tagging performance was further enhanced with the use of deep-learning classifiers in
the DL1 algorithm series [35], which are fully connected multi-layer feed-forward neural networks.
They included the kinematic properties of the jet pr and 7 and the outputs of the low-level algorithms
described above. The samples are resampled such that jet py and n are uniformly distributed for
each flavour class, to avoid that the classifier discriminates the different flavours by the differences
in the kinematic distributions. For the training of these algorithms a hybrid sample of ¢ events and
Z' — qq events was used, with ¢f making up 70 % of the events. The outputs of RNNIP were added
to the DL1 classifier as inputs to form the DL1r model. In the DL1d model, the RNNIP input was
replaced by the DIPS (Deep Impact Parameter Sets) algorithm, which encoded the tracks in a jet
in a permutation-invariant way as opposed to the sequential feeding of tracks in a fixed order as in
RNNIP. This approach lead to a slight increase in performance, and more importantly, to significantly
lower training and evaluation times by a factor of approximately 3 [36]. The discriminants of the
DL1x models, which also provide effective flavour probabilities p,,, p., and py;, are identical to the
RNNIP discriminant in equation 2.5.

In these approaches, the properties of the reconstructed jets and tracks are used in low-level
algorithms, either reconstructing physical properties of the jet system as in the vertex fitter or providing
probabilities for the different flavours as in the impact—parameter algorithms. Through feeding
the outputs of these algorithms into deep-learning models the performance of flavour tagging was
enhanced [31]. In recent years a different approach was pursued by the ATLAS collaboration: Feeding
the properties of the jets and associated tracks directly into the high-level models [25]. The physics
context provided by e.g. the vertex fitters is not supplied to the model, but recovered in auxiliary
tasks contributing to the training besides the main task of jet—flavour identification. This end-to-end
approach has the practical advantage that only one algorithm has to be developed and maintained,
instead of a handful of models. The GN1 model utilizes Graph Neural Networks (GNNs) [25] and
the model studied in this work, GN2, follows the transformer architecture [5]. Before providing an
overview of these models in section 2.4.3 and discussing their advantages over previous ones, a few of
the machine learning concepts are introduced in section 2.4.2.
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2.4 Flavour Tagging

2.4.2 Machine Learning Concepts

Auxiliary learning is a useful machine learning strategy which aims to provide more problem-specific
context to the model. This is done by having the model not only train with the main task, but also
additional auxiliary tasks, which are related to the main task. If done right, the addition of these
tasks can improve the performance of the models main purpose by acting as an inductive bias [37].
An example can be found in computer vision, where it was shown that depth estimation is a useful
auxiliary task for semantic segmentation (labelling each pixel in an image with a semantic class) [38].
In the same work it was found that the other way around, adding semantic segmentation as an auxiliary
task to depth estimation, did not help. Thus, challenging a model with additional tasks to improve
its performance on the main task is not trivial. There is a lot of research concerned with what tasks
should be trained together and how to optimize multitask learning. A typical framework consists of
shared layers, to learn a unified representation for all tasks, followed by task-specific layers, while the
loss function is a linear combination of each task [37]. The flavour-tagging models detailed in section
2.4.3 follow this typical framework.

Graph Neural Networks are models designed to work on data structures that can be modelled with a
graph, which describes a set of objects (nodes) and their relationships (edges). In each GNN layer,
the weights of the nodes and edges are updated via message passing between the nodes while not all
nodes have to be connected necessarily. Due to the expressive power of graphs, GNNs can model
complex relational data to embed or extract the features of the nodes, edges or the entire graph. An
important difference to other powerful models which extract features from (locally) connected parts of
the data, is the non-Euclidean character of the graph representation, whereas e.g. Convolutional Neural
Networks (CNN) operate on Euclidean data like two-dimensional grids (images) or one-dimensional
sequences (text) [39]. This has lead to successful applications of GNNs in a variety of fields.

Transformers are another class of deep-learning models, which work with sequential data and are set
apart from other models by relying solely on attention mechanisms, while previous models of similar
nature paired the attention mechanism with RNN or CNN elements. By getting rid of recurrence
and convolution, the neural network becomes highly parallelizable, making it more resource efficient
while the transformer also performs significantly better in e.g. translation tasks [40]. The heart of
the transformer model is the Scaled Dot-Product Attention. Attention in a machine-learning context
determines how important each part of the given sequence is relative to all the other parts. In Scaled
Dot-Product Attention, this is realized by a set of queries packed in a matrix Q, a set of keys in matrix
K and a set of values in matrix V, which result in the attention according to

. ok’
Attention(Q, K, V) = softmax V, (2.6)

Vi

with the scaling factor d; being the dimension of the queries and keys [40]. Usually, multiple attention
heads are used, each projecting the queries, keys and values with weights corresponding to one head.
The different heads lead to a multitude of representations, which are then concatenated. Typical
transformer models used for example in language processing consist of an encoder and a decoder and
contain layer normalization and feed-forward networks after the Multi-Head Attention with residual
connections reaching around the attention and feed-forward layers [40].

In section 2.4.3 it will be shown how the application of these machine-learning methods managed
to greatly improve the performance of the jet—flavour tagging in the ATLAS collaboration.
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2.4.3 Current Flavour Tagging in ATLAS

In recent years, ATLAS flavour tagging moved beyond the hierarchical approach to flavour tagging,
in which low-level algorithms extract physical information out of the data, which is then fed into a
deep-learning neural network as described in section 2.4.1. One of the first all-in-one taggers is GN1
[25]. It is a Graph Attention Network, a GNN utilizing the attention mechanism. The architecture of
GNI1 is depicted in a schematic way in figure 2.12. The input to GN1 is done on a track-by-track basis,
and in addition to the track properties the kinematic properties of the jet, pr and ||, are added to each
track. The amount of tracks utilized per jet is limited to 40. If more tracks are associated to the jet
than this limit, the first 40 tracks with the largest transverse impact parameter significance are chosen.
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Figure 2.12: The network architecture of GN1. The colours represent individual inputs corresponding to one
track, where each track is combined with the jet properties. These track inputs are fed into an initialization
network, after which their representations make up the nodes of a fully connected graph. The conditional
representations after the GNN are then fed into the networks for the jet—flavour prediction, track—origin prediction
and vertex matching tasks. [25]

After an initial feed-forward neural network, the representations of the tracks act as the nodes of a
fully connected GNN, so that all the relations between the tracks are considered by the model. With
the graph model, a conditional representation of the tracks is acquired, which is then fed into different
neural networks for each task. The physics context of the differences in jet structure depending on
the flavour, although not provided by low-level algorithms, is recovered with the help of auxiliary
tasks. Each task has a designated feed-forward neural network before the output layer, as is typical
in the case of auxiliary learning. The main task, jet—flavour prediction, uses the representation of
the whole graph to classify the flavour of the jet. The track—origin prediction auxiliary task tries to
predict the type of process in which the charged particle matched with the track was produced, so
it yields a prediction per track and uses the nodes of the GNN. The vertex prediction auxiliary task
does not fit vertices, like JetFitter for example, but it finds vertices, so it outputs a probability per pair
of tracks for them to share a vertex, and thus it relies on the edges between the nodes. The different
classes of the truth origin are detailed in table 2.2. The truth origin category OtherSecondary is of
particular interest for this work since it already partially contains the material interactions and decays
of long-lived particles introduced in section 2.3.2. This label and its use for this work is discussed in
more detail in section 3.1.
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Table 2.2: Truth origin categories serving as classes in the truth—origin classification task in GN1 and GN2. [25]

Truth Origin Description

Pileup From a proton collision other than the primary interaction

Fake Created from the hits of multiple particles

Primary Does not originate from any secondary decay

fromB From the decay of a b-hadron

fromBC From a c-hadron decay, which itself is from the decay of a b-hadron
fromC From the decay of a c-hadron

OtherSecondary  From other secondary interactions and decay

The auxiliary tasks infer the physics context described in section 2.4.1, e.g. a b-jet having a displaced
secondary vertex. The loss functions for the jet flavour and track—origin predictions is the categorical
cross entropy and for the vertex prediction it is the cross-entropy loss. The total loss function of the
model being minimized is a linear combination of these losses according to

Ly = Lige + L

et vertex

+ IBLorigin’ 2.7)

with the choice @ = 1.5 and 8 = 0.5 to ensure the convergence of the individual losses to similar
values, while L;, is expected to be slightly larger than the other two as it is the loss of the main
task [25]. An example prediction to illustrate how the model captures the physics context of the jet
characteristics used for flavour prediction is provided in figure 2.13 with the prediction of a true b-jet
containing not only a secondary, but also a tertiary decay vertex. The jet was correctly predicted as a
b-jet and its substructure was also correctly recognized by the auxiliary tasks. The three true vertices
were identified by the model, the correct origins were assigned to the tracks, and the model could
recognize that the two pileup tracks do not share a vertex with any other track associated to the jet.
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Figure 2.13: One prediction of the GN1 model for a true b-jet. The high p,, score shows that the model could
correctly tag the b-jet. The black and grey squares indicate which tracks share a vertex and the colours of the
tracks indicate the track origins according to the legend. The vertex and origin predictions were also completely
correct in this example. [41]
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The GNI1 architecture was extended and changed to the closely related GN2 model. A few key
changes lead to GN2 being more similar to a transformer encoder. The GATv2 attention was replaced by
the Scaled Dot-Product Attention introduced in section 2.4.2, the number of attention heads increased
from two to eight, layer normalization with dropout was added, and further changes were done leading
to an increase of trainable parameters from 0.8M in GN1 to 1.5M in GN2 [5]. Initially, both GN1
and GN2 provided the jet—flavour probabilities p;,, p., and py;e, and the b-tagging discriminant was
constructed according to equation 2.5. However, while this work was performed, the GN2 model was
expanded by the probability p . for jets from hadronic 7 decays and so the discriminant follows

Pp
fc'pc+f‘r'p‘r+(l_fc_f‘r)'plight ’

D, =log (2.8)

with £ describing the relative 7-jet importance. Overall, GN2 still follows the same layout as GN1 as
shown in figure 2.12, and the tasks as well as the loss strategy remain the same. The input is also done
in the same way with each track being complemented in its properties by the kinematics of the jet. An
overview of the inputs to the model used for this work can be found in table 2.3.

Table 2.3: The inputs to the GN2 model used in this work. The jet inputs are attached to each track being fed
into the network.

Jet Input Description

Dt Jet transverse momentum

n Signed jet pseudorapidity

Track Input Description

q/p Track charge divided by momentum (measure of curvature)

dn Pseudorapidity of the track, relative to the jet n

do Azimuthal angle of the track, relative to the jet ¢

dy Closest distance from the track to the PV in the transverse plane
Zpsin@ Closest distance from the track to the PV in the longitudinal plane
o(q/p) Uncertainty on g/p

o(0) Uncertainty on track polar angle 6

o (o) Uncertainty on track azimuthal angle ¢

s(dy) Lifetime signed transverse IP significance

s(zg) Lifetime signed longitudinal IP significance

nPixHits Number of pixel hits

nSCTHits Number of SCT hits

nIBLHits Number of IBL hits

nBLHits Number of B-layer hits

nIBLShared  Number of shared IBL hits

nIBLSplit Number of split IBL hits

nPixShared =~ Number of shared pixel hits

nPixSplit Number of split pixel hits

nSCTShared Number of shared SCT hits

leptonID Indicates if track was used in the reconstruction of an electron or muon
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In order to train this larger model, the amount of training jets was increased from 30M to 192M
[5] in the GN2 training. Jets from a ¢7 sample are used for the training in the 20 < p; < 250 GeV
region and jets from a Z” sample for the 250 < py < 5000 GeV region. The tf events are modelled
using the Powheg Box event generator and adding parton shower, hadronisation, and underlying event
via Pythia [5]. The Z’ events used to populate the higher transverse momentum regime consider a
hypothetical heavy Beyond Standard Model (BSM) particle called Z’, which can decay into pairs of
b-quarks, c-quarks, 7-leptons or lighter quarks [5]. These events are generated with Pythia directly.
The decays of b- and c-hadrons are handled by EvtGen, as opposed to other long-lived hadrons, which
are decayed in the detector simulation. This difference informs the labelling described in section 3.1.2.
Both the #7 and Z’ events are produced at \/s = 13 TeV and at /s = 13.6 TeV. Different versions of the
mentioned software packages are used for the different kinds of events and at the different energies [5].

In the usual reconstruction of these events for flavour tagging purposes Geant Thinning is applied.
Skimming, slimming, and thinning are used to reduce the amount of data in the xAOD format.
Skimming removes whole events from the data, thinning is the removal of individual objects and
slimming is the removal of variables within a given object. Geant Thinning removes truth particles,
which were written in the truth record by Geant, based on certain criteria. However, the tracks
reconstructed out of these truth particles are kept. So the jets, which are being tagged, still contain
the same tracks. However, for some tracks of detector simulation particles the information about the
particle is missing. For this study and other flavour tagging and tracking work, a special data sample
was produced, not including the Geant Thinning algorithms, allowing a more detailed investigation of
material effects and their influence. The differences between the default reconstruction and the one
without Geant Thinning are broadly discussed in chapters 3 and 4.

Individual jets will have different discriminant values (equation 2.8) and will follow a given
distribution. Thus, to decide whether a jet is b-tagged or not, certain values have to be used as cuts.
If the jet has a discriminant value above the cut, it is considered a b-jet, otherwise not. These cut
values are used to define the working points. A handful of these working points are agreed upon and
calibrated as all the supervised learning can only be done on simulation data with the truth information
present. The usual quantities to evaluate a tagger within the ATLAS collaboration is the efficiency of
b-tagging, i.e. how many true b-jets are actually tagged as b-jets, and the rejection of the other classes.
The rejection is the inverse of the mistagging efficiency, i.e. the inverse of how many c-jets, T-jets
or light jets, respectively, are falsely tagged as b-jets. Figure 2.14 shows the large improvement in
performance with the advent of GN2 over the hierarchical taggers of the DL1 series and over GN1.
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Figure 2.14: Comparison between the performance of the DL1 series taggers and the GN series taggers. All
models were evaluated at a b-tagging efficiency of 70 % and the rejections for light and c-jets of DL1 were set
as reference for the later models. [42]
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CHAPTER 3

Material Interactions in Flavour Tagging

3.1 Secondary Origin Categorization

3.1.1 Motivation of the Categorization

The original motivation of this work was only identifying hadronic interaction tracks in jets, because
light jets containing hadronic interaction vertices might be more prone to being mistagged as they
share some characteristics central to the tagging of heavy-flavour jets as outlined in section 2.4.1.
But this effort was expanded beyond only hadronic interactions to include all interactions, which are
managed by the detector simulation. These interactions are commonly referred to as secondaries.
This might be confusing as the decay vertices of heavy-flavour hadrons (containing a b or c¢) are also
referred to as secondary vertices, but for the sake of brevity this work will use secondaries to refer to
effects modelled by the detector simulation. Three distinct types of secondaries are depicted in figure
3.1, showing the similarity to the features of b-hadron decay shown in figure 2.11.

The core idea is for the flavour-tagging model to learn to consider the tracks of secondary origin in
the prediction of jet flavour less. The low-level algorithms used for secondary-vertex reconstruction
directly veto tracks of secondary origin as described in section 2.4.1. In this work, the model is
expected to learn this itself, which is further detailed in section 4.1. In order for a model to be trained
by supervised learning techniques, the corresponding truth information has to be present, so the
track-by-track input to the model has to be expanded by a truth label. A labelling scheme has to be
put in place, which should put tracks into categories which differentiate if the track is of a secondary
origin or not. This was not realized as a binary classification, however, as a few common secondaries
are distinguished, instead of only making up one category. Additionally, there is a category of tracks
not from a secondary origin, and there is a category combining fake and pileup tracks. Motivating the
distinction of hadronic interactions and gamma conversion is straightforward. These effects are only
possible in the presence of detector material and can therefore be seen as nuisances mimicking the
behaviour of heavy-flavour decays in light jets. The categories of long-lived particle (LLP) decays
have a less physically sound motivation as the characteristic features of actual heavy-flavour jets are a
result of the longevity of hadrons containing a b or a c. Bottom and charm hadron decays are not
handled by the detector simulation, the LLP decays belonging to the secondaries are decays of strange
hadrons. Additionally, not all strange hadrons are decayed by the simulation, most strange hadron
decays are handled by the generator just as bottom and charm hadron decays. This depends on the
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Figure 3.1: Three examples of secondaries, which might be found in a jet: Hadronic interaction, gamma
conversion and the decay of a long-lived particle (LLP). They each have a secondary vertex displaced from the
primary vertex (PV) leading to tracks with high impact parameters d,.
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3.1 Secondary Origin Categorization

lifetime of the strange hadrons. Two prominent strange hadrons with a long lifetime are Kg mesons
and A baryons. In the beginning of the categorization effort, both of these strange hadrons had their
own category, while in later labelling schemes these two categories were broadened to include all
strange meson or baryon decays performed by the simulation. Figure 3.2 shows how far away from the
beam line certain hadrons are decayed either by the generator or by the simulation. In this and all
following figures of the same style, statistical uncertainties are represented by shaded bands around
the histogram lines.
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Figure 3.2: Radial distance of decay vertices to the beam line for different hadrons. Hadrons are split up
depending on their quark content and whether they have been decayed by simulation or generation, where only
strange hadrons are decayed by simulation.

Strange hadrons are decayed by the simulation in both material interactions (most probable hadronic
interactions) and as decays-in-flight, which refers to the standard decay modes of strange hadrons.
This becomes apparent in the figure as the decay spectrum of the strange hadrons decayed by the
simulation is enhanced at positions of the detector material, which were introduced in section 2.2.2.
The distinction between hadrons decayed by the generator versus hadrons decayed by the simulation is
the foundation of this categorization, that is also why the decay-in-flight of strange hadrons done by
the simulation has corresponding categories in the labelling scheme, although physically there is no
clear distinction to the decay-in-flight of strange hadrons done by the generator. Nonetheless, because
of the distinct decay modes of the strange mesons and baryons, it is also not completely unphysical
to distinguish them. Another reason to include the simulation decay-in-flight processes is that the
categorization is not perfect, as is further described in section 3.1.2.
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3.1.2 Origin and Secondary Origin Labelling

A look at the current flavour-tagging models GN1 and GN2 described in section 2.4.3 shows that
track origins are already utilized. The track—origin label, found in table 2.2, already provides truth
information to the model, which is used for the training of the track—origin prediction auxiliary
task. In the track—origin label, there already is a category OtherSecondary present, in which tracks
of secondary origin should be placed. Thus, one possible implementation of a classification of
secondary origins would be to make the OtherSecondary category more granular to differentiate
between hadronic interactions, gamma conversion and decays-in-flight of long-lived particles. But
a closer look at how this label is determined reveals, that working with the track—origin label will
not suffice for the purposes of this work. Before describing the labelling scheme of the track origins
and the secondary track origins, which are implemented separately, figure 3.3 already shows that an
expansion of the origin label would not have sufficed. The figure shows how the ftagTruthOriginLabel
is distributed in the ftagTruthSecondaryOriginLabel, a first attempt at a labelling of secondaries. The
depicted secondary origins contain not only tracks which are of the OtherSecondary category in the
track—origin label, there are significant contributions from the categories FromB, FromBC, FromC
and minor ones from the other origin categories.

1 4210% ftagTruthOriginLabel in ftag TruthSecondaryOriginLabel
» 1. : : : :
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12— mmm FromTau —
W FromC 7
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Figure 3.3: The distribution of track—origin label categories in the secondary track—origin categories. The
NoSecondary category of the secondary origin label is displayed as a pie rather than another bar, because of the
abundance of tracks in that category.

The secondary origin categories depicted in figure 3.3 were expanded by a NoTruth category,
and the KshortDecay and LambdaDecay categories were extended to the more inclusive categories
StrangeMesonDecay and StrangeBaryonDecay. The label for the secondary origin of tracks was
renamed to ftagTruthSourcelLabel (also referred to as track source) in the development of this
categorization, because it is shorter and less prone to confusion with the origin label, but it is important
to keep in mind that in principle it is also concerned with the origin of a track. To understand the
source label itself and the differences to the origin label, an in-depth description of how both labels
are acquired is necessary.
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3.1 Secondary Origin Categorization

The main question in labelling the origin of a track, secondary or not, is which part of the decay chain
determines the origin. The labels have to be exclusive as the existing origin prediction task in the GN2
is not a multi-class classification and the addition to the model was chosen to follow the same design.
As an example, a bottom hadron can decay and one of its decay products can interact hadronically
with the detector material. Which origin should be assigned to the product of this hadronic interaction
depends on what the label is used for. In the case of the track—origin label the track should be labelled
FromB in this example, in the case of the source label it should be HadronicInteraction. Both labelling
schemes are realized in Athena, the main software repository used by the ATLAS collaboration.
Two packages within Athena are utilized for this, the InDetTrackSystematicsTools package and
the FlavorTagDiscriminants package. The former is more generally used, also by other working
groups, while the latter is specifically used in the derivations of the data used for the flavour-tagging
efforts. For the purposes of training and validating the models GN1 and GN2, the data in the DAOD
format (Derived Analysis object data) are converted into HDF5 (Hierarchical Data Format version 5),
abbreviated as h5. An overview of both labelling schemes is provided in figure 3.4.

Track Origin Labels in FTAG

§ e Decorator
TuthParticle . getTruthOrigin — ), get_source_type » i » ftagTruthSourcelLabel ..

getTrackOrigin

Track in h5
TruthParticle

!

TrackParticle ———p| getTruthOrigin —p getExclusiveOrigin — . ftagTruthOriginLabel

!

InDetTrackSystematicsTools FlavorTagDiscriminants getTrackOrigin

Figure 3.4: Overview of the track—origin and track-source labelling process utilizing the InDetTrackSystematics-
Tools (green) and FlavorTagDiscriminants (red) packages of Athena.

Labelling starts with two fundamental object types, which are used in the ATLAS software
framework, TruthParticle and TrackParticle, which contain the truth record information used. If the
truth information of the particle is present, the TrackParticle contains a link to the corresponding
TruthParticle it is associated with. The origin label relies on the TrackParticle and the getTrackOrigin
method to determine the track origin. The getTrackOrigin method uses the TruthParticle object and
getTruthOrigin method, which is shown in figure 3.5, but expands it by having additional functionality
for pileup studies and by categorizing tracks as fake, if the matching probability is not sufficient. The
source label directly uses the getTruthOrigin method as this suffices for this purpose. In this stage, the
origin is not exclusive, but multiple categories are stored in a bitwise flag. Different origins are recorded
by this flag, each corresponding to a digit in the bit, which is set to 1 if the respective conditions are
met. The possible origins are: the secondaries KshortDecay, StrangeMesonDecay, LambdaDecay,
StrangeBaryonDecay, GammaConversion, OtherDecay, HadronicInteraction, OtherSecondary; the
decays BHadronDecay, DHadronDecay, and TauDecay; Fragmentation; OtherOrigin, which is also
limited to particles from the detector simulation like the secondaries; Fake and Pileup, which are
added in getTrackOrigin for TrackParticles only.

29



Chapter 3 Material Interactions in Flavour Tagging
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Figure 3.5: Flow diagram showing how the getTruthOrigin method constructs an origin for a provided
TruthParticle. The secondary origins classification is found in figure 3.6.

30



3.1 Secondary Origin Categorization

The first categories to be checked in getTruthOrigin are BHadronDecay, DHadronDecay, and
TauDecay by simply looking at the parent particle. These three categories are set apart from the others
as only for them the whole decay chain upwards of the particle, which is currently being categorized,
is scanned. Thus, the bit corresponding to one of these three decays is set to 1, respectively, even if
the particle is not a direct daughter of such a decay, but further down the decay chain. Additionally,
if a particle is a result of a charm hadron decay, which in turn was the daughter of a bottom hadron
decay, both categories BHadronDecay and DHadronDecay are set to 1. After these three decays it is
checked if the particle is a simulation particle or not. If yes, then the secondary origin classification
differentiates the different secondary categories. If none of the origin categories conditions were met,
the bit corresponding to Fragmentation is set to 1 in the origin.

The secondary origin classification shown in figure 3.6 is part of the getTruthOrigin method and
is implemented such that the secondary origins are exclusive with respect to each other while the
general origin is not, as already discussed. There are two exceptions to that, with StrangeMesonDecay
and StrangeBaryonDecay being more general than KshortDecay and LambdaDecay, and so a particle
belonging to the KshortDecay category is also in the StrangeMesonDecay category, for example. As
the source label will only use the more general categories, the origin flag is still exclusive concerning
the utilized categories of that label. If the parent of the particle is not in the truth record, no assumption
about the origin of the particle can be made and therefore OtherOrigin is set to 1. GammaConversion
is set to 1 in the case of the parent of the particle being a photon and the particle itself being an electron,
which also includes positrons as they leave a similar signature as electrons. If a GammaConversion
was not found to be true for the particle, the decay-in-flight categories are checked. Generally, the
classification differentiates between decay-in-flight and hadronic interaction by using the number
of children of the parent particle, two children corresponding to a decay-in-flight and more than
two corresponding to hadronic interactions. If the parent of the particle has two children, it is
checked whether it was a strange meson or baryon and, if either applies, StrangeMesonDecay or
StrangeBaryonDecay is set to 1. Furthermore, if StrangeMesonDecay or StrangeBaryonDecay is set to
1, and if the particle itself is one of the most probable decay products of a Kg or A, the KshortDecay
or LambdaDecay categories are set to 1. In the case of the parent not being a strange hadron, but still
having two children, the OtherDecay bit is set to 1 in the origin flag. Should none of the decay-in-flight
categories apply, it is checked whether the parent has more than two children, then HadroniclInteraction
is set to 1, or not, then the particle is sorted into the OtherSecondary category.

The way the classification differentiates decay-in-flight and hadronic interaction by the number of
children of the parent is a weakness of the secondary origin classification. There are decay channels
of hadrons with more than two children and with the way hadronic interactions are handled in the
simulation, there can be only one or two children emerging in the truth record, although, in reality,
hadronic interactions tend to involve more particles as the hadron interacts with a nucleus [11]. Over
the course of this work, it was tried to fix this weak point and replace this condition by a more
physically accurate solution. An improvement on this condition was planned to be along the lines
of how decay-in-flight and hadronic interaction were separated in the material study of the ATLAS
detector [11], from which figure 2.6 was taken. In this material study, the mass of the secondary vertex
mgy 1s used to veto Kg or A decays for hadronic interactions, for example. In a decay-in-flight, the
mass of the secondary vertex mgy should be equal to the masses of these strange hadrons m K0 OF My
within a certain mass error margin, when calculating mgy; under the assumption that the two daughter
particle are pions in the case of Kg or a proton and a pion in the case of A. No assumptions on the
type of daughter particles would have to be made in the context of the truth labelling, as they are
known within the truth record. Implementing a similar condition in the secondary origin classification
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Figure 3.6: Flow diagram showing the classification of secondary origins inside the getTruthOrigin method.
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was not possible, at least that late in the reconstruction and derivation flow. The problem with the
implementation was that not all daughter particles, or at least their truth information, were present for
the decays handled by the detector simulation. One part of this is the Geant Thinning described in
section 2.4.3. To realize a more accurate condition to separate decay-in-flight and hadronic interaction
processes, a categorization has to occur earlier in the code, but this was beyond the scope of this study.

Once the origin flag is built, either by getTruthOrigin directly in the case of the source label, or
by getTrackOrigin in the case of the origin label, the bitwise origin flag has to be converted into an
exclusive label. For the origin, the method getExclusiveOrigin serves this purpose. This method
prioritizes the categories in the order of how they are listed in table 2.2, e.g. a particle with an origin
including both BHadronDecay and HadroniclInteraction interaction is assigned the FromB category, as
FromB is listed before OtherSecondary in the table. There is one special case, the FromBC category,
which is for particles coming from decay of a charm hadron, which itself was a daughter of a bottom
hadron decay. The FromC category only includes daughters of charm hadrons, which were not
daughters of bottom hadrons. This separation is important as the tertiary decay vertex of a charm
hadron inside a b-jet can be a helpful feature for the identification of b-jets as described in section 2.4.
Thus, a particle for which the bit in the origin flag corresponding to BHadronDecay is 1, but the bit for
DHadronDecay is 0, ends up in FromB, while a particle for which both are 1 ends up in FromBC, and
a particle only ends up in FromC, in the case of BHadronDecay being 0 and DHadronDecay being 1.
This prioritization leads to particles with secondary origins only being placed in the OtherSecondary
category when none of the origins before applies and results in what is shown in figure 3.3. Hence, the
origin label does not capture all secondaries in its OtherSecondary category and is not useful for the
study of the influence of secondaries of flavour tagging. Especially since secondary origins are already
very rare, as is seen in section 3.2, loosing a third of the tracks of secondary origins to more abundant
categories in the origin label would be counterproductive for the studies performed in this work.

For the source label, the origin flag is made exclusive by the get_source_type method added
to FlavorTagDiscriminants as part of this work. This method is based on the mutually exclusive
secondary categories (the more inclusive StrangeMesonDecay and StrangeBaryonDecay are used),
SO no prioritization between them has to be implemented. Particles without truth information are
assigned to the NoTruth category. Particles, which are not from detector simulation processes,
are assigned to the NotSecondary category. Then the HadronicInteraction, StrangeMesonDecay,
StrangeBaryonDecay and GammaConversion all correspond to the same category in the origin flag and
the categories OtherOrigin, OtherDecay, and OtherSecondary are put together in the Other category
in the source label. Unfortunately, a bug was introduced during this work, which lead to particles with
the OtherSecondary bit set to 1 in the origin flag not being considered simulation particles. The bug
was only found and fixed after the studies were done. It leads to the very low number of tracks in the
Other category of the source label as seen in section 3.2.

The origin labelling is applied to the TrackParticle, while the source labelling is applied to the
corresponding truth particle. Thus, a decorator is needed, which decorates the track with properties of
the TruthParticle, including the source label. The decorator includes an additional condition, which
sorts tracks into NoTruth, independent of the origin flag of the TruthParticle, if they are not stable or
have a pr below 500 MeV and are not a charm hadron.

The source label categories and their classification are summarized in table 3.1. The truth
information contained in this label is used to study the effects that tracks of secondary origin have
on jet—flavour tagging in section 3.2 and are utilized in an effort to improve the performance of the
ATLAS jet—flavour taggers, as detailed in chapter 4.
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Table 3.1: Overview over the track source label classifying tracks into NoTruth, NotSecondary, and different
secondary origins, which are highlighted by being written in a bold font.

Source Condition
NoTruth no association with truth particle possible (e.g. PU)
NotSecondary associated with truth particle, but not a simulation particle

HadronicInteraction parent has a number of children > 2
StrangeMesonDecay  parent is strange meson, parent has 2 children
StrangeBaryonDecay parent is strange baryon, parent has 2 children
GammaConversion parent is photon, particle is electron

Other a simulation particle, but not in the above categories

3.2 Characteristics of Jets Containing Secondary Interactions

With the truth information regarding secondary origins of tracks put in place by the implementation
of the source label, tracks of secondary origin and jets containing these tracks can be studied.
The motivation for this work was that light jets containing these secondary processes share the
characteristics of heavy-flavour jets used in their identification: the secondary vertex, the subsequently
larger impact parameters of the tracks, and a larger number of tracks. Thus, the secondary processes
classified by the source label might contribute significantly to the misidentification of light jets as
heavy-flavour jets. To confirm if that is indeed true, some characteristic quantities are investigated.

The track impact—parameter is one such quantity. In figure 3.7, the distributions of track impact
parameters of tracks associated with jets are shown. On one hand the distinction between these
distributions between tracks in light jets and tracks in b-jets is shown, on the other hand the distinction
is drawn between tracks of generator particles and tracks of simulation particles. The difference in the
dy distribution is even more pronounced for the latter distinction. Thus, the tracks being of secondary
origin or not has more discriminative power than the tracks being part of a heavy-flavour jet or not
with respect to the impact parameter. This effect might seem exaggerated in figure 3.7, where each
histogram is normalized to unit area. There are significantly fewer tracks of simulation particles than
of generator particles.
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Figure 3.7: Track impact—parameter distributions, the left plot distinguishing tracks of a generator or simulation
particle and the right plot distinguishing tracks in a light or heavy-flavour jet.
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Another characteristic feature of heavy-flavour jets, the larger number of tracks, is depicted in figure
3.8. Similar distinctions are made as for the track impact—parameters, only that this feature is of jets
themselves. Thus, to quantify the effect of phenomena modelled by the detector simulation, the jets
are distinguished by having no track of secondary origin at all (only NoTruth and NotSecondary) and
having at least one track of secondary origin. Comparing this distinction to the one between light and
heavy-flavour jets shows a very similar separation for both.
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Figure 3.8: Distribution of the number of tracks in a jet, the left plot distinguishing jets with or without a track
of a simulation particle and the right plot distinguishing light or heavy-flavour jets.

At high pq, the efficiency of b-tagging is decreased, mainly due to a deterioration in track
reconstruction, especially in the jet core [43]. An additional complication is that at higher transverse
momentum there are also more tracks of secondary origin. This can be seen in figure 3.9, which
shows the relative amount of secondary tracks in light jets for the ¢7 and the Z’ samples introduced in
section 2.4.3. The 7 sample is dedicated for a lower py range, while and the Z” sample covers a higher
pr range. In the case of ¢7, the special sample without Geant Thinning is also available. The expected
effect of jets containing more secondary tracks when they have a larger transverse momentum is very
noticeable for the 7 No Geant Thinning sample (NGT). For this sample, the fraction of secondary
tracks in the jet keeps increasing with pr, while for the default sample the fraction remains constant.
This difference is to be expected as the secondary tracks, for which the truth information about them
being secondary has been thinned, are not counted as secondaries, but are still counted for the total
amount of tracks in the jet in the default sample. Because no NGT sample was produced for a
comparison to the default Z* sample, it is unclear if for very large p the relative amount of secondary
tracks really decreases slightly, as indicated by the figure. Additionally, only reconstructed tracks,
which also pass the selection criteria and are associated to a jet, are taken into account. For higher py
jets the reconstruction efficiency of secondary tracks is also decreased and the increased amount of
secondary phenomena contributes to the denser environment of tracks in the jet.

The expectation that light jets containing tracks of secondary origin are similar to heavy-flavour jets
in their characteristic features, is fulfilled. Thus, the question remains, how the currently deployed
model deals with jets containing these secondaries. Figure 3.10 shows the GN2 b-tagging discriminant
introduced in section 2.4.3, but without the 7 classification, as this was added to the model later. The
five plots show how the light-, c-, and b-jets are distributed in the discriminant with the distinction
between jets containing no secondary track and jets containing at least one secondary track of each
category. The categories contain KshortDecay and LambdaDecay as this was investigated when the
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Figure 3.9: Relative amount of secondary tracks within jets as a function of p of the ¢7 (left) and Z’ (right)
samples. The default ¢ sample is compared to the one without Geant Thinning (NGT).

label was in a preliminary form. Clearly the model can separate the different jet flavours better when
there are no secondary tracks present in the jet, independent of which kind of secondaries. The smallest
deteriorating effect on the separation of the flavours comes from the GammaConversion source and the
largest from the HadronicInteraction source as seen by how far apart the two discriminant distributions
are for jet with and without secondaries. A possible reason for these differences are the signatures of
these effects and how similar they are to a decay of a heavy-flavour hadron. Gamma conversions have
a very clear signature, while hadronic interactions can differ quite a lot between each other. It is also
important to keep in mind that GN2 is a large transformer model and thus capable of picking up these
relations without making them explicit. Thus, the model might already have learned to distinguish
between the secondary vertex of a b-hadron decay and a gamma conversion. The idea of this work
was to adapt the model such that it picks this context up more directly as detailed in chapter 4. The
original expectation that light jets containing secondaries appear as b-jets to the model is quite clear
in the plots: The distribution of light jets containing secondaries is shifted to the right compared to
light jets not containing secondaries. In addition to that, the figure shows that b-jets with tracks of
secondary origin are also harder to identify as b-jets, probably because their signature is not as clear
as for b-jets without secondary origin tracks.

Figure 3.11 shows the abundance of tracks in the different source categories. There are very few
tracks in the secondary categories as most are NotSecondary or do not have the truth information
relevant for the categorization available and thus end up in NoTruth. The low number of secondary
tracks will present a challenge in chapter 4. The NGT sample holds up to expectation of containing
more relevant truth information as it contains fewer tracks in the NoTruth category and significantly
more tracks in the HadronicInteraction and GammaConversion categories, approximately three times
the amount. Here, it is important to note, that the depicted data was acquired with the faulty derivation
containing a bug discussed in section 3.1, which leads to tracks with the OtherSecondary bit set to 1 in
the origin not being considered secondary, although they should be labelled as Other in the source label.
Thus, there should be more tracks in the Other category. However, figure 3.11 is representative of the
data used in the studies detailed in chapter 4. In an earlier stage of this work, when the source label was
called the secondary origin label, the amount of tracks in the Other category was approximately the
same as in the HadronicInteraction category, but since the secondary origin label used KshortDecay
and LambdaDecay over the more general StrangeMesonDecay and StrangeBaryonDecay, more tracks
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Figure 3.10: The b-tagging discriminant of the GN2 model for light jets (ujets), c-jets (cjets), and b-jets (bjets).
The five distributions show jets containing no secondary and jets containing at least one secondary of the
categories GammaConversion, HadronicInteraction, KshortDecay, LambdaDecay, and Other.
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are classified as Other as they would for the source label. Taking all secondaries together, a bit over
20 % of all jets in the default /7 sample include at least one secondary track. For the NGT ¢7 sample it

is up to 40 % of the jets, as can be seen in figure A.1 in the appendix.
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Figure 3.11: Total number of tracks in each of the source label categories with approximately 13.8 million
tracks of the default and NGT reconstruction of the ¢f sample respectively. The inset plot shows the secondary
categories in more detail as they contain very few tracks compared to the NoTruth and NotSecondary categories

Also concerning the abundance of secondary tracks, an interesting feature of the jets would be a
difference in how many tracks of a certain secondary category they contain depending on the flavour of
the jet. In the appendix, figure A.2 and A.3 show this for the 7 and Z’ sample respectively. Light, c-,
and b-jets only show minor differences in this respect and with the overall small amount of secondaries

it is not probable that these differences play any role in the distinction between jet flavour. The 7-jets

are very different from the other flavours in this regard, because they also differ from the other kind of

jets in general, being more narrow and having low track and energy multiplicities [44]. These two
figures also show that significantly more jets contain secondary tracks in the Z’ sample, especially
of the material interaction categories HadronicInteraction and GammaConversion, due to the higher

transverse momentum.
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To make sure that the No Geant Thinning reconstruction does not differ from the default reconstruction
used for flavour-tagging purposes, except for containing more truth information and thus improving the
secondary origin track labelling, the input variables of jets and tracks for GN2 were compared. Figure
3.12 shows this comparison for the jet input variables, transverse momentum p and pseudorapidity 7,
and additionally compares the number of tracks per jet and the number of secondary tracks per jet. As
expected, the two input variables and the total number of tracks per jet show no significant difference,
while the number of secondary tracks does. The twenty track input variables are compared in a similar
fashion in the figures A.4, A.5, A.6, A.7, and A.8 in the appendix. They also do not show significant
differences in the physical observables.
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Figure 3.12: Histograms of the two jet input variables pr and n7 for GN2, the number of tracks per jet, and the
number of secondary tracks per jet, comparing the default and NGT ¢ sample.
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Overall, jets containing tracks of secondary origin share the same characteristics that set the
heavy-flavour jets apart and make them easy to tag. The deteriorating impact of secondary origin
tracks in jets on the ability of the model to differentiate between the flavours is observed in the
b-tagging discriminant. Additionally, it is shown how rare tracks of secondary origin are, which can
be improved by using data without the Geant thinning applied. With the additional truth information
available in NGT data, approximately three times more tracks coming out of material interactions,
i.e. hadronic interactions and photon conversions, can be correctly identified as such. It is also shown
that, apart from the additional truth information, the NGT data is identical to the one going through
the default processing of the data.
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CHAPTER 4

Adding Secondary Origin Classification to
Flavour Tagging

4.1 Expanding the Model Architecture and Retraining

With the labelling scheme for secondary tracks in place and the expected behaviour of jets containing
them confirmed, an approach to mitigate the impact of these secondary effects can be worked out.
The approach studied extensively in this work is the addition of a further auxiliary task to the GN2
model as depicted in figure 4.1. Section 2.4.3 already discusses how auxiliary tasks can be used to
inject physical context into a learning model directly. The two already implemented auxiliary tasks
supporting the jet—flavour prediction are the vertex prediction task, trying to match tracks pairwise,
and the track—origin prediction. The new track—source prediction auxiliary task shares an identical
architecture to the track—origin prediction task due to their close relation, which was discussed in
detail in section 3.1.2. The added task classifies tracks into the source categories that can be found in
table 3.1: NoTruth, NotSecondary, HadronicInteraction, StrangeMesonDecay, StrangeBaryonDecay,
GammaConversion, Other.
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Figure 4.1: The network architecture of GN2 expanded by the source auxiliary task indicated in the red box.
The colours represent individual inputs corresponding to one track (combined with jet properties).
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The input of the model consists of the jet variables, which are concatenated with the variables of
the up to 40 leading tracks associated with the jet. Both, the jet and track variables, are listed in
table 2.3. The tracks are ranked according to absolute track impact—parameter significance. These
combined inputs are then fed into a per-track initialization network of a single hidden layer and an
output layer of 256 nodes. Next is a transformer encoder, which consists of eight layers with eight
attention heads and an embedding size of 256. The output of the transformer is projected down to 128
dimensions and provides a conditional per-track representation after the initial track representations
could incorporate information of the other tracks within the jet. A global representation of the jet
is achieved by attention pooling and this global jet representation as well as the conditional track
representation are then provided as inputs to the networks of the specific tasks. Each of the task
networks consist of three hidden layers with sizes 128, 64, and 32 respectively. The main task of jet
classification only uses the global representation of the jets and has four outputs p,, p.., p,,, and p . for
the tagging discriminants. The auxiliary tasks also use the track embeddings. The origin—prediction
task has eight output categories for the origins in table 2.2, the vertexing task has a binary output layer,
and the added source—prediction task has seven output categories. The SiLU activation function is
used across the model and the tasks use cross entropy loss. This implementation of the GN2 model is
not identical to the final version of GN2 [5] as this work was done while GN2 was being finalized and
work on GN3 [45] already started. For example, the final GN2 version still uses the ReL.U activation,
while the SiLLU activation used here was a change introduced in the development of GN3. But, very
significant changes to what kind of inputs are used and which tasks the models contained have been
introduced later in the GN3 development, so that the model investigated here is still similar to GN2.

The total loss function of the model being minimized is a linear combination of the task losses
according to
Ly = Ligt + @L

jet vertex T BL +yL 4.1)

origin source
with the choice @ = 1.5 and 8 = 0.5 as described in section 2.4.3. The loss of the source task is added
and brings with it the additional parameter y. Different values for this parameter were studied in
this work and it will be referred to as task weight (TW) in the following. For the source task weight
v, choices of 0.5, 1, and 2 were tested. The parameters «, S, and y should be chosen such that the
individual losses are approximately equal and that the loss of the jet—flavour prediction task being

slightly larger than the rest, since it is the main task of the model.

In addition to the weight of the source—prediction task, the weighting of the different categories
inside the source task loss is also important. Contrary to the origin prediction, where no weights are
applied to the different origin categories, different weighting schemes are applied to the source classes.
Either the source classes are not weighed, they are weighed according to their relative abundance,
or they are weighed with the square root of the factor of their relative abundance. These schemes
will be referred to as CWnone, CWfull, and CWsqrt. Section 3.2 showed how imbalanced the track
source classes are and that the interesting secondary categories contain few tracks. Thus, if no
weighting strategy is put into place, it is a good strategy for the model to simply classify all the tracks
as NotSecondary or NoTruth. The different strategies will yield models with significantly different
performance in the source—prediction task.

To adequately judge the impact of the source auxiliary task on the model, a model within identical
architecture, but without the source task, has to be trained alongside the model being tested under
the same conditions and with identical data. The data flow in the Monte-Carlo simulation process
was presented in section 2.3.1. The flavour tagging specific part begins with special derivation
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4.1 Expanding the Model Architecture and Retraining

formats taking the AODs into the DAOD format with Athena software packages, part of which were
introduced in section 3.1.2 for the truth labels assigned within the derivation. Once the DAODs
are available, the algorithm development in flavour tagging is decoupled from the ATLAS analysis
software frameworks and further processing of the data is done with software developed and maintained
by the flavour-tagging group, which is tailored to the needs of the development process. Figure 4.2
shows the workflow within the flavour-tagging environment.

DAOD
root files

, preprocessed
h files hs files

training-dataset-dumper @ Umami@& w o Salte
Project ID: 34016 (3 Project ID: 79534 (g - Project ID: 144780 3}

ONNX
models

Figure 4.2: The workflow of the ATLAS flavour-tagging development including the training dataset dumper,
Umami PreProcessing, and Salt. [46]

The training dataset dumper (TDD) is the first part of this flavour tagging specific chain [47]. It
takes data in the DAOD format and outputs files in the HDFS5 format. In the flavour tagging case, the
jets are stored with the associated tracks and the TDD takes a configuration to choose which variables
in the DAOD file are saved. Besides the input variables and truth labels of both the jets and associated
tracks needed for the training of a model, additional information might be stored for studies and
comparison, e.g. the p,, p., p,,, and p_ scores of older versions of the model. Through the selection
of variables in the TDD configuration and the h5 format, the output is considerably smaller than the
input DAODs. The flavour-tagging ecosystem is built around the h5 format, because it is designed to
store and structure large datasets and because it is well-supported across software like Python, which
is widely used in the FTAG pipeline. This makes the flavour-tagging software easily accessible and
contributes to the fast turnaround time in the development of the taggers.

The produced hS5 files are then fed into the Umami PreProcessing (UPP) software [48]. Umami
is a framework which was used to train many of the machine learning based taggers in ATLAS,
e.g. DL1x and DIPS. Although the training for the current flavour-tagging work is not done in Umami,
the preprocessing developed for it is still in use. In addition to classic preprocessing steps, like the
scaling and shifting of variables and the removal of outliers, UPP is geared towards the physical
context of jet—flavour tagging. Inside the configuration file provided to UPP, the exact amount of jets
per flavour is chosen, and thus the bias introduced by different amounts of jets from the respective
flavour is avoided. This also enables the easy usage of jets from different samples, e.g. the 7 and Z’
samples commonly used for the different p regions. UPP also enables resampling of the jets in the
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kinematic distributions of pr and 1, which has to be applied to avoid the kinematic bias introduced by
the differences in the distributions between jet flavours. After preprocessing, the different flavours
are approximately identically distributed across the kinematic range. UPP also provides the relative
amounts for the different categories in the truth labels, which can be further used as class weights in
the training. The most abundant class is assigned to have a value of one and the others are assigned a
factor as the ratio to the most abundant class. The output of this preprocessing is also split into train,
validation, and test datasets, for which the splitting ratio is determined in the UPP configuration.

The training of the jet—flavour taggers is done in Salt [49]. Salt is built on Pytorch Lightning and
enables the direct building of machine learning models via configuration files. It was designed for
the development of GN1 and GN2, but it was also made available for older taggers like DL1x. Salt
allows the building and modification of taggers on a very high level through the configuration files,
contributing to the accessibility and fast turnaround time, just like TDD and UPP. It supports multi-
modal and multitask models as the building process in the configuration files is done by specifying the
building blocks of the model one after the other and detailing their architecture, e.g. number of nodes
in a layer or number of attention heads in the transformer part. Training is then executed by providing
the configuration and the datasets acquired from the earlier steps. It is possible to monitor the training
process via comet [50], tracking quantities like the total or individual losses during the training. Salt
saves the model at defined points during the training as checkpoints and saves metadata about the
training itself, containing also the configurations. The models built and trained in this way can also be
exported to the Open Neural Network Exchange (ONNX) format, which is used in C++ environments
like Athena. Thus, although the flavour-tagging development takes place outside the usual ATLAS
software frameworks, the models can be integrated seamlessly. However, the data can also be directly
evaluated with a model saved in the checkpoints of the training.

The data used to train GN2 was introduced in section 2.4.3. For this study, a smaller amount of data
was taken through the workflow. The various model setups investigated in this work were trained on
three different datasets. For the comparison with other ongoing work in the ATLAS flavour tagging
effort at the time, a first dataset of 18.6 million 7 and 7.4 million Z” jets was used, which will be
referred to as default. As the special production without the Geant Thinning in the AOD reconstruction
did not contain Z” events, only 18.6 million #7 jets were used to form the dataset, which will be referred
to as NGT. Models trained on this NGT sample could not be compared fairly to models trained on the
default dataset as they contain different total amount of jets and cover a different py range, so another
18.6 million #7 jets dataset was constructed with the default reconstruction. This will be referred to
as OTTB (only t7). Each of these datasets were split in such a way that 80 % of the jets are used for
training and 10 % for testing and validation respectively. All ¢f sets are composed of 4.5 million b-
and c-jets respectively, 9 million light jets and 625 thousand 7-jets. The Z’ part of the default dataset
consists of 1.8 million b- and c-jets respectively, 3.6 million light jets and 250 thousand 7-jets. For
the source—prediction task, table 4.1 shows the class weights in the loss as they are calculated by UPP.
The table again shows the increased abundance of secondaries in the NGT data as shown in section
3.2, but it also compares a pure ¢7 sample (OTTB) with the merged ¢7 and Z’ sample (default).

The preprocessing of the datasets and the training of the various model setups was performed on
the OMNI-cluster of the University of Siegen [51], providing ample storage and GPU access, which
was utilized during the training. The TDD and UPP configurations were not noticeably different
compared to the commonly used one, but the configuration of Salt includes the expansion of the model
architecture. The model configurations are available in the repository in Ref. [52], which is a fork
of the Salt repository. For all three datasets, default, NGT, and OTTB, the model was trained only
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Table 4.1: Weights for the source classification task classes when applied in full for the default, NGT, and OTTB
datasets.

Source Default NGT OTTB
NoTruth 472 5.86 4.33
NotSecondary 1.00 1.00 1.00

Hadroniclnteraction 147.31 100.90 311.12
StrangeMesonDecay 89.15 69.00 70.22
StrangeBaryonDecay 178.41 145.04 144.96
GammaConversion 46.57 12.65 38.81
Other 5509.32 982.89 5981.48

once without the additional track source—prediction task. An overview of the different setups, which
include the additional source task, trained in this study, is given in table 4.2. In the training process,
the different choices of the task weight parameter was informed by the resulting tagging performance
of the model and by the losses themselves, as the source task loss should be approximately equal to the
losses of the other auxiliary tasks. The choices of class weighting schemes were also informed by the
tagging performance of the models, and by the performance of the source classification task, as these
weights have a large influence on the specific task itself. No formal hyperparameter optimization was
performed for the determination of the task weight parameter, the choice of the class weight scheme,
and neither for the parameters already included in the architecture, which was expanded for these
trainings.

Table 4.2: Trained model configurations including the track source—prediction task with different task weights
(TW) and class weights (CW) across the different datasets. If the setup was trained and evaluated it is noted
with a tick (v'), otherwise it is left blank.

Dataset TW CW

none sqrt full

0.5 v v

Default 1 v
2 Vv v v
0.5 v

NGT 1 v
v v v

0.5
OTTB 1 v
v
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4.2 Results of Retraining

The impact of the source auxiliary task on the performance of the model is evaluated with the Receiver
Operator Curves (ROC curves) shown in figures 4.3 and 4.4, of which the former shows the evaluation
with the #7 jets and the latter with the Z’ jets in the testing split of the default dataset. Both figures show
the curves for the model trained on the default dataset without the additional source auxiliary task and
for all the trained model setups with the additional task. Since this work focuses on the b-tagging with
GN2, the model outputs p;,, p., p,, and py;e, are evaluated in the b-tagging discriminant given in
equation 2.8. The f,. and f, values chosen for the calculation of the discriminant score are f,. = 0.2
and f. = 0.01, the recommended values for GN2 [5]. The ROC curves are acquired by placing cuts on
the discriminant and calculating the b-tagging efficiency, how many true b-jets are correctly predicted
as b-jet, and the rejections of the other flavours, which is the inverse of these flavours being falsely
tagged as b-jets. With the supervised learning methods utilized in the current approach to flavour
tagging, the models can only be trained on Monte-Carlo simulation, because the truth information has
to be available. But as the physics modelling, e.g. the distributions of and the correlations between
the input variables in the model, is not perfect, the model might perform differently on collision
data. This problem is attended to by dedicated calibration analyses, which measure the tagging
efficiency directly for a set of pre-defined operating points (OPs) [5]. For the GN2 model inclusive
b-jet tagging efficiencies of 65 %, 70 %o, 77 %, 85 %, and 90 % were defined and the model calibrated
at these values [5]. The OPs are not determined by the b-jet tagging efficiencies, but rather as fixed
cuts in the discriminant, resulting in the listed inclusive efficiencies for a reference ¢f sample. Thus,
for different samples the efficiencies resulting from these discriminant cuts might differ. In the Z’
sample, the same cuts in the discriminant yield efficiencies of approximately 22 %, 29 %o, 40 %, 63 %o,
and 81 %, depending on the exact sample. The efficiencies at the OPs in the ¢ sample are nearly
identical to the inclusive b-jet tagging efficiencies listed. The model is calibrated at multiple OPs,
because different physics analyses profit from different trade-offs in tagging efficiency and background
rejection, depending on their physics cases. These points inform at which b-jet efficiencies the ROC
curves with the different source task setups should be compared.

In the t7 sample (figure 4.3), two setups of the model with the source task clearly outperform the
standard model without the source task, TW2-CWsqrt and TW2-CWnone. They are consistently
better at rejecting light jets with an improvement of up to 25 % and show a very similar rejection of
c-jets to the model without the source task. The other combinations of task weight parameter and
class weighting schemes yield mixed results in the light jet rejection, performing significantly worse
for low b-jet efficiencies, but better at high b-jet efficiencies, including the highest two of the five
operation points. In the c-jet rejection, the other models including the source task are either also
similar to the model without the source task, or perform significantly worse.

Similar observations are made for the Z’ sample (figure 4.4). The TW2-CWsqrt and TW2-CWnone
setups of the source task outperform the standard model very clearly in the light jet rejection, reaching
close to an improvement of factor two at the lower OPs. The rejection of c-jets is still very similar for
most models, but, interestingly, the otherwise well-performing TW2-CWsqrt leads to a decrease of
5% to 10 % in the c-jet rejection of the Z’ sample.

Every source task setup benefits the rejection of 7-jets in t7 and Z’ jets. As the 7-jets represent the
smallest fraction in the dataset, a model closer to the physics context of flavour tagging might benefit
their modelling the most. Additionally, figure A.2 and A.3 in the appendix show that 7-jets are quite
different from the other flavours, because they contain fewer tracks of secondary origin.
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Figure 4.3: ROC curves of the b-jet tagging efficiency and the background rejections of the model trained
without the additional source task and all setups with the additional source task trained on the default dataset.
All models are evaluated on the 7 part of the test split.
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The ROC curves show the performance of the different models in the main task of the model, tagging
b-jets as such, while rejecting as much of the other flavours as possible. To assess the performance
of the source classification task itself in the different models, confusion matrices are used. Figure
4.5 shows the confusion matrix for the TW2-CWsqrt model and figure 4.6 the confusion matrix for
the TW2-CWnone model, both evaluated on #f data. These matrices are normalized to 1 per row,
which means that for each true category of the source label it is shown how the tracks in that category
are distributed in the predictions over all the categories. The confusion matrices for these models
evaluated on default Z” data show very similar results and can be found in the appendix in figure A.9
for the TW2-CWsqrt model and in figure A.10 for the TW2-CWnone model.
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Figure 4.5: Confusion matrix of the source prediction in the TW2-CWsqrt model evaluated on default ¢7 data.

As the two models shown here improved the performance of jet—flavour prediction significantly,
good performance in the source—prediction task would confirm the assumption motivating the addition
of the source—prediction task. The assumption is that the classification of secondary tracks helps the
model to distinguish between secondary vertices from heavy-flavour hadron decays and from material
interactions and the decays-in-flight of other long-lived hadrons. For figure 4.5, showing model
TW2-CWsqrt, this is the case. The confusion matrix shows a well-performing source prediction,
especially considering the large class imbalance. This could explain the performance boost in the
main task. However, the model TW2-CWnone in figure 4.6, does not confirm this assumption. This
model performs poorly in the prediction of secondary origins of tracks, but still improved the main
task performance. Thus, it appears that the improvement in performance of jet—flavour prediction is
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Figure 4.6: Confusion matrix of the source prediction in the TW2-CWnone model evaluated on default #7 data.

independent of a well-performing source prediction and that the assumption of this venture does not
hold. Possibly, the differences per model in jet—flavour prediction shown with the ROC curves are a
result of statistical fluctuations. Yet, it is also possible that the NoTruth and NotSecondary divide is
sufficient to benefit the performance of the model. The TW2-CWnone model in figure 4.6 does not
classify the secondaries well, but it still manages to distinguish NoTruth and NotSecondary well. This
could be helpful as NoTruth contains pileup tracks for example, so the source task would support the
origin—prediction task in its classification described in section 2.4.3.

The poor performance of the TW2-CWnone model is due to the missing class weights. As described
in section 4.1, the huge class imbalance in the source label leads to the model not being punished
for predicting the very rare secondary origins as the abundant NoTruth or NotSecondary categories.
All trained CWnone models show the poor performance of the source prediction in the confusion
matrices, while CWsqrt models show a good classification. Utilizing the class weight in full in the
CWfull models leads to an even better classification of the secondaries, but the performance of the
NotSecondary prediction is reduced by approximately 5 %, which leads to an overall worse performing
task, because of the large amount of tracks in the NotSecondary category. Thus, for a well-performing
source prediction, the weighting scheme with the square root of the class weights should be preferred.

The classification of the Other category is performing poorly through all the models, because few
tracks are in this category. Interestingly, in the CWnone models, which show a poor classification of
the secondary origins, the material interaction categories HadronicInteraction and GammaConversion
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tend to be misclassified as NoTruth rather than NotSecondary, although the NotSecondary category is
the most abundant. This hints at a similarity of material interaction secondaries and pileup tracks, while
the tracks from long-lived strange-hadron decays are more similar to the NotSecondary tracks. Even
in CWnone models the GammaConversion and StrangeBaryonDecay categories retain a very good
predictive capability in the source task. The prediction of GammaConversion and StrangeBaryonDecay
sources perform the best out of the secondaries throughout the different setups. This might be due
to the decay of strange baryons and the conversion of photons having distinct characteristics, which
make them more easily identifiable.

The impact of the class weighting choice becomes apparent in the performance of the source task.
The other variation of the trained models, the task weight, manifests itself in the loss of the source task
during the training. Figure 4.7 shows the losses of the models discussed in detail so far, TW2-CWsqrt
and TW2-CWnone, and the loss of the TW1-CWsqrt model. In the comparison between TW2-CWsqrt
and TW1-CWsqrt, the direct impact of the task weight parameter is observed, as the loss of the source
task in the TW2-CWsqrt model is approximately twice as high as in the TW1-CWsqrt model. But the
class weights also have a large impact on the loss of this task. The difference between the losses of
TW2-CWsqrt and TW2-CWnone is even slightly larger than a factor of two.

TW2-CWsqgrt TW1-CWsgrt
1.2 1.2

— jet -3 — jet

origin origin
0.2 ---- source 0.24 ---- source

—-— vertexing —-— vertexing
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0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
epoch epoch
TW2-CWnone
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O — et
origin
0.2 | ---- source
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Figure 4.7: Losses as a function of training epoch for the jet flavour, track origin, vertex, and track source
prediction tasks for three of the trained models: TW2-CWsqrt, TW2-CWnone, and TW1-CWsqrt.
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In general, the goal discussed in section 2.4.3 of the jet—flavour prediction being the dominant loss
and the auxiliary tasks being approximately equal, but below the main task, is not met. In all three
models shown in figure 4.7, the vertexing task loss is larger than the jet—flavour prediction loss for
the first fifteen to twenty epochs of training. The origin task loss is consistently small compared to
the other tasks. This observation might motivate a different choice for the parameters o and g, the
weights of the origin and vertexing task in the linear combination of the losses, for the GN2 model,
as they were chosen to be equal to the ones in use for GN1 [5]. But since GN3 does not use the
linear combination approach to the loss anymore, such studies might not be warranted in the current
flavour-tagging development.

In section 3.2, the impact of secondaries on the unaltered GN2 model was studied by considering
the discriminant distributions of the different jet flavours in figure 3.10. The discriminants of the
different flavours are not as well separated for jets containing secondaries as compared to jets not
containing secondaries. The idea motivating this work was to mitigate this effect by adding a task
categorizing the secondaries. Figures 4.8 and A.11 in the appendix show the comparison between the
discriminant distributions for the jet flavours of the model trained without and with the additional
source task, specifically the TW2-CWsqrt setup. Figure 4.8 shows this comparison on the ¢7 data and
figure A.11 on the Z” data. A direct comparison of these discriminant distributions to figure 3.10 is
not appropriate, because the discriminant scores in this figure were acquired from a training of an
early version of the GN2 algorithm without the 7-jet class and on the full dataset.
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Figure 4.8: The b-tagging discriminant of the TW2-CWsqrt model and the model without source task evaluated
on the #f data for light jets (ujets), c-jets (cjets), b-jets (bjets), and 7-jets (taujets).
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The anticipated impact of the source task on the discriminant is not observed, the distributions
are not better separated. At a first glance in the ¢7 data, the opposite seems to apply. For the b-jets
the distribution does not reach as high in the discriminant score with the addition of the source task,
and the light jet distribution is less populated in the very low discriminant scores. However, the
distributions are not merely shifted, while retaining their form, they are narrower. The observed
performance improvement of the ROC curves is found in the tails of the distributions around O in the
b-tagging discriminant. The upper tails of the light jet and 7-jet distributions are shorter as well as
the lower tail of the b-jet discriminant. For the Z’ data, a similar picture arises, but the fact, that the
TW2-CWsqrt model performed worse in c-jet rejection than the model without source task, can be
observed in the upper tail of the discriminant distribution of the c-jets.

The desired improvement could have manifested in light jets containing secondaries forming a
discriminant distribution closer to light jets without secondaries, such that the gap observed in figure
3.10 gets narrower, and more light jets have lower b-tagging discriminant values. But figure 4.9 shows
that this is not the case. It splits the discriminant distributions for the light jets in the ¢ evaluation data
for both, the TW2-CWsqrt model and the model without source task, into containing secondaries or
not. The desired effect is not observed. Thus, the model still considers light jets containing secondaries
more b-jet like than light jets without, even with the addition of the source auxiliary task.
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Figure 4.9: The b-tagging discriminant of the TW2-CWsqrt model and the model without source task for light
jets, split for each model into jets containing at least one track of secondary origin and jets containing none.
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Figure 4.10 also illustrates this by showing the average relative amount of secondaries in light jets
over the b-tagging discriminant for both the TW2-CWsqrt model and the model without the source
task. This figure shows the #7 data with the corresponding Z’ figure A.12 in the appendix. A higher
relative amount of secondaries clearly correlates with higher discriminant scores, as is expected. But
the addition of the source task has no significant impact on this correlation. On the lower end of the
discriminant, a small surplus of secondaries is observed, but besides that, the histograms match very
closely, especially in the bins without large errors.
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Figure 4.10: Relative amount of secondary tracks in a jet over the b-tagging discriminant for the TW2-CWsqrt
model and the model without source task, evaluated on ¢ data.

To summarize, all the results show that the model is definitely capable to identify and categorize
tracks of secondary origin, as it shows relatively good accuracies in the source prediction, especially
when considering the class imbalance in the training data and the fact that the source prediction is
only meant to be an auxiliary task. The performance of the models trained in this work regarding the
source prediction is comparable to the capabilities of GN3 in the origin prediction [45]. Furthermore,
a potential improvement of the jet—flavour prediction through the addition of the source—prediction
auxiliary task is observed. Although the impact on the performance of the main task is quite volatile
with respect to the chosen task weight and class weighting scheme, two setups provided a consistent
25 % improvement in light jet rejection. Most model setups yielded a worse performing flavour-tagging
model, but a potential performance boost of this magnitude warrants further study, especially since it
was realized without altering other parts of the architecture.
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4.3 Results of Retraining on No Geant Thinning Data

The models trained on NGT data are expected to perform better in the source—prediction task, and
thus possibly also perform better overall, because the increased availability of truth information leads
to less class imbalance by labelling fewer tracks as NoTruth and more tracks as of secondary origin,
especially HadronicInteraction and GammaConversion, as seen in table 4.1 or figure 3.11. The model
performance in jet—flavour tagging, shown in figure 4.11, confirms this expectation in part, as more
variations of the model including the source task show a consistent improvement over the model
without. Except for the TW2-CWfull model, the models with the source task show an improved light
jet rejection either at or even below the lowest operating point, which is at 65 % b-jet efficiency. They
also show either similar or improved performance in c-jet rejection. The 7-jet rejection also shows
similar performance between the models with and without source task. Thus, when comparing this
performance to the trainings on default data in figure 4.3, the expectation for the NGT training is
fulfilled, as nearly all variations of the model including the source task show a consistent improvement
in the rejections of the other flavoured jets. Interestingly, a significant improvement in 7-jet rejection
like in the default dataset is not observed for the models trained on the NGT data. All in all, the
expected improvement is observed within the comparison between NGT models.

A direct comparison between the models trained on the NGT dataset and models trained on the
default dataset is not insightful due to the Z" sample not being available without Geant Thinning. As
described in section 4.1, the OTTB dataset was introduced exactly for direct comparisons between
data including and excluding the Geant Thinning. Comparing the models trained on the OTTB data
amongst themselves shows that the addition of the source task leads to a severe deterioration of the
rejection of light and 7-jets, and a similar rejection of c-jets, as seen in the ROC curves in figure A.13
in the appendix. Since the two models with the source task trained on OTTB data have the same setups
as the best ones trained on default and NGT, respectively, the clearly worse performance is surprising.

One problem might be the composition of the loss, which is discussed below. Another more general
problem, applying to all trainings, is the low number of jets used for training. After this work was
already past the stage in which the models were trained, a number of jets was recommended for studies
on developing the flavour-tagging algorithms, which was 30 million. The default dataset comes close
to this with approximately 26 million jets, but the NGT and OTTB dataset only consist of 18.6 million
jets, slightly more than half of the recommendation. The benefit of the extra physics context provided
by the additional task might only take effect for more training data, because additional tasks also
increase the complexity within the model and training process. Additionally, the models trained on
NGT and on OTTB data share the exact same architecture as the ones trained on the default dataset,
and this architecture was optimized for ¢7 and Z’ jets.

The comparison between NGT and OTTB models is depicted in figure 4.12. It shows a worse
performance for the NGT models, regardless of whether the source task is included or not, compared
to the OTTB model without the source task. The c- and 7-jet rejections are clearly worse, while
the light jet rejection is ambiguous, but worse for most of the OPs. Why the model without source
task trained on the OTTB dataset performs the best out of the NGT and OTTB models is not clear.
Especially since the only difference between the NGT and OTTB dataset is that there is more truth
information available in the NGT dataset, but still the NGT NoSource model performs worse than the
OTTB NoSource model. There is one caveat to this comparison, because the ROC curves are created
by evaluating the models on the type of dataset on which they were trained, so the OTTB and NGT
models are neither trained nor evaluated on the exact same data. In section 3.2, it is demonstrated that
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Figure 4.11: ROC curves of the b-jet tagging efficiency and the background rejections of the model trained
without the additional source task and all setups with the additional source task trained on the NGT ¢7 dataset.
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there is no difference in the variables used by the model, whether Geant Thinning is applied or not, so
the data used for the evaluation should only differ due to statistical effects.

Independently of the performance in the main jet—flavour prediction task, the models trained on
NGT data should perform better in the source prediction, because of the reduced class imbalance. For
a direct comparison, the confusion matrix for both datasets are shown for the TW2-CWsqrt model, in
figure 4.13 with the NGT dataset, and in figure 4.14 with the OTTB dataset. Both show a relatively
good performing source task, considering it is an auxiliary task, just like some models trained on the
default dataset discussed in section 4.2. One noticeable difference between the NGT and OTTB source
task performance is the significant improvement of accuracy in the GammaConversion category by
17 %. The GammaConversion prediction is even more accurate than the NoTruth prediction, despite
also having less tracks in the NGT dataset, which points to the photon conversion having a distinct
signature, which the model can identify well. Although the number of tracks in the HadronicInteraction
category tripled similar to the number of tracks in the GammaConversion category, the prediction
for Hadroniclnteraction tracks does not improve significantly, only by 3 %. StrangeMesonDecay and
StrangeBaryonDecay predictions perform very similarly between NGT and OTTB, which fits the
expectation as the number of tracks in these categories are also very similar with or without Geant
Thinning applied.

The concerns regarding the loss of the trainings on the default dataset get worse for the OTTB and
NGT trainings. Figure 4.15 shows the individual losses of the tasks over the epochs of the trainings
for the TW2-CWsqrt in the NGT and in the OTTB datasets. The loss of the vertexing task, which was
slightly larger than the loss of the jet—flavour prediction task for the training on the default data, is
significantly larger for the NGT and OTTB trainings. Additionally, the source—prediction task loss is
also significantly larger. The fact that these two components of the overall loss are larger than the loss
of the main task might explain the unexpected degradation of performance in the main task. A close
look at the OTTB loss shows that the minimum of the source—prediction task is few epochs earlier than
the minimum of the jet—prediction task. This might lead to a model being selected as the best one by
having the overall smallest loss, which is actually premature with respect to the jet—flavour prediction.
Thus, the good performance of the source prediction and the negative impact of the addition of the
source task on the jet—flavour prediction might be explained.

The expectations placed in the models trained with the NGT dataset are fulfilled at least partially.
Reducing the class imbalance by approximately tripling the amount of tracks in the GammaConversion
and Hadroniclnteraction categories of the source label led to a sizeable improvement in the Gamma-
Conversion prediction. Surprisingly, a similar improvement for the HadronicInteraction category
is not observed, which can probably be attributed to hadronic interactions being more complicated
processes. The increase in performance of the jet—flavour prediction thanks to the additional source
task is way more robust when comparing different models trained on the NGT data. A comparison
of the models trained on the NGT data with the ones trained on the OTTB data yields unexpected
results. The model without the source task trained on OTTB data, containing less truth information,
outperforms all models trained on NGT data. This might be due to the low number of jets in the
training or a result of the absence of Z’ jets in the OTTB and NGT datasets.
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Figure 4.12: ROC curves of the b-jet tagging efficiency and the background rejections of the models without
source task trained on the NGT and OTTB data and the TW1-CWsqrt model trained on NGT data.

58



4.3 Results of Retraining on No Geant Thinning Data

NGT tt TW2 CWsqrt

1.0
NoTruth_true -JctemReRz 0.52% 0.68% 0.46% 2.19% 0.04%
NotSecondary_true - 1.34% 0.48% 0.53% 0.65% 1.27% 0.20% 0.8
HadronicInteraction_true - 6.00%  4.96% PFGERPALAY 8.90%  5.27% 11.34% 0.26%
0.6
StrangeMesonDecay_true - 5.24% 8.10% 4.98% PEERGEAN 10.94% 5.36% 0.22%
-0.4
StrangeBaryonDecay_true - 6.72% 16.11% 6.52% 16.75% @ 44.78% 8.80% 0.32%
GammaConversion_true - 2.30% 4.78% 1.36% 0.67% 0.71% [RENAZE 0.11% 0.2
Other_true - 6.60%  37.50% 16.71% 5.67% 3.57% 12.38% 17.57%
-0.0

NoTruth_pred -
NotSecondary_pred -
Other_pred -

Hadroniclnteraction_pred -
StrangeMesonDecay_pred -
StrangeBaryonDecay_pred -

GammaConversion_pred -

Figure 4.13: Confusion matrix of the source prediction in the TW2-CWsqrt model trained on the NGT data.
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Figure 4.14: Confusion matrix of the source prediction in the TW2-CWnone model trained on OTTB data.
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Figure 4.15: The losses for the jet flavour, track origin, vertex, and track—source prediction tasks for the
TW2-CWsqrt models trained on the NGT (left) and OTTB (right) data.
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Conclusions and Outlook

Flavour tagging within ATLAS has seen a huge boost in performance by deploying a Graph Neural
Network architecture within the GN1 model and expanding this architecture to a Transformer Encoder
in the GN2 tagger. In contrast to previous taggers, the GNx models are designed in an “end-to-end”
approach, directly being provided with the variables of the jets and tracks, whereas the input to
previous taggers were not only observed variables, but also the output of more low-level algorithms.
These low-level algorithms, e.g. IP2D and SV1, concern themselves with characteristic features of
the jets like the impact parameter of the contained tracks or the reconstruction of a secondary vertex
inside the jet, when possible. These characteristics are crucial in the identification of jet flavour and
the information, which was gained through the low-level algorithms in previous taggers, is still utilized
in the newer neural network based models by the usage of auxiliary tasks. In GN1 and GN2 the
track—origin prediction and the vertexing auxiliary tasks are used to recover the information about the
structure of the jets and thus provide more physical context to the model, supporting the main task of
jet—flavour prediction.

The defining qualities of heavy-flavour jets, e.g. a secondary or even a tertiary vertex in the jet
and tracks with large impact parameter, also emerge in jets containing tracks of secondary origin.
The decay-in-flight of long-lived strange hadrons, the hadronic interactions of hadrons with the
detector material, or the conversion of photons, are all secondary effects modelled within the detector
simulation. The motivation of this work was the expectation that light jets containing these secondaries
are more likely to be misidentified as b-jets by the flavour-tagging models. In order to investigate
this a labelling scheme was put into place, which categorizes tracks into NoTruth, NotSecondary,
Hadroniclnteraction, StrangeMesonDecay, StrangeBaryonDecay, GammaConversion, and Other. This
label, called track source, was used to confirm that the presence of secondaries in jets makes it harder
for the model to identify the flavour of a jet. Additionally, the label can be used to employ different
strategies to mitigate this effect. However, the labelling is not ideal, and would benefit from a more
sophisticated way to differentiate between decay-in-flight and material interaction processes. Working
this out was beyond the scope of a master’s thesis project and would necessitate a larger effort in the
collaboration, including experts in reconstruction and detector simulation.

A first approach to mitigate the deteriorating effects of secondaries on flavour tagging, using the
implemented labelling, was studied and consisted of adding a further auxiliary task to the flavour-
tagging model. This source task classifies the tracks of a jet into the categories of the source track
label. One major challenge of this approach is the huge class imbalance resulting from the low number
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of secondary tracks. Multiple models were trained, varying the weight of the additional auxiliary task
in the linear combination of the losses and varying the weighting scheme of the source classes. While
the source task itself performed well in most of these models, the impact of the additional task on the
jet—flavour tagging performance was not unambiguously positive. There are setups improving the
performance consistently, especially the rejection of light jets, as expected, but also setups with worse
performing flavour tagging. Within the No Geant Thinning sample, offering more truth information
on particles from material interactions, the source task has a consistent positive effect on the flavour
predictions. However, the comparison of the NGT to a comparable default dataset did not confirm this
inclination. But the potential improvement in flavour tagging through the source task was observed
and warrants further investigation.

With the truth information put into place, performing further studies within the flavour-tagging
workflow will be straightforward. The amount of jets used for further investigations should be
increased, as it was a concern in the studies performed in this work. Should studies with NGT data
be performed, they should also contain high py events like in the Z" samples. While this work
was ongoing, the flavour tagging model was developed even further. Studying the effect of the
source—prediction task on the GN3 model would be interesting as it uses different inputs and a new
strategy of combining the losses of different tasks. Furthermore, modifications of the rest of the
architecture alongside the addition of an auxiliary task could be investigated.

A different approach to handle secondaries was also proposed at the beginning of this work, for
which the time of the project did not suffice. Instead of incorporating the identification of secondaries
into the flavour-tagging model, a standalone tool could be developed for this purpose, possibly using
an autoencoder architecture. The output of this could also be used by flavour-tagging models. One
big advantage of this would be a more complete view of the secondary processes, because the tracks
included in the flavour-tagging data have to pass stringent conditions to even be considered and have
to be associated to a jet. The standalone tool would work on a much broader selection of tracks and
the identification of tracks coming out of secondary processes would be the main task of this tool.

This thesis demonstrated how the continuous improvements of jet—flavour taggers within ATLAS
lead to a situation, in which the consideration of seemingly minor or relatively rare effects, such as
material interactions and other secondaries, can have a beneficial effect on the performance. Taking
secondaries or effects of similar magnitude into account might even become necessary in future efforts
to improve flavour tagging and similar challenges, enabling more precise measurements of known
fundamental physics and a better chance at reaching for what is yet unknown.
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APPENDIX A

Additional Figures
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Figure A.1: Number of secondary tracks per jet for the default and the NGT ¢7 sample.
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Appendix A Additional Figures

Amount of jets with at least one track of a secondary origin source category
(using ftagTruthSourceLabel for 1.86M ttbar jets)
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Figure A.2: Relative amount of jets containing at least one track of the secondary categories for the different
flavours of jets in the 77 sample.
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Amount of jets with at least one track of a secondary origin source category
(using ftagTruthSourceLabel for 0.74M zprime jets)
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Figure A.3: Relative amount of jets containing at least one track of the secondary categories for the different
flavours of jets in the Z” sample.
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Figure A.4: Histograms of the four track input variables d,, z, sin 6, d¢, and dn for GN2 comparing the default

derivation and NGT derivation of the ¢7 sample.
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Figure A.6: Histograms of the four track input variables oy, Ty/ps number of pixel hits, and number of SCT hits
for GN2 comparing the default derivation and NGT derivation of the ¢7 sample.
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Figure A.7: Histograms of the four track input variables number of innermost pixel layer hits, number of next to
innermost pixel layer hits, number of innermost pixel layer shared hits, and number of innermost pixel layer
split hits for GN2 comparing the default derivation and NGT derivation of the ¢f sample.
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Figure A.8: Histograms of the four track input variables number of pixel shared hits, number of pixel split hits,
number of SCT shared hits, and leptonID for GN2 comparing the default derivation and NGT derivation of the
tf sample.
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Figure A.9: Confusion matrix of the source prediction in the TW2-CWsqrt model evaluated on default Z” data.
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Figure A.10: Confusion matrix of the source prediction in the TW2-CWnone model evaluated on default Z’
data.
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Figure A.11: The b-tagging discriminant of the TW2-CWsqrt model and the model without source task evaluated
on the Z’ data for light jets (ujets), c-jets (cjets), b-jets (bjets), and T-jets (taujets).
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Figure A.12: Relative amount of secondary tracks in a jet over the b-tagging discriminant for the TW2-CWsqrt
model and the model without source task, evaluated on Z’ data.
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Figure A.13: ROC curve of the b-jet tagging efficiency and the background rejections of the model trained
without the additional source task and all setups with the additional source task trained on the OTTB ¢7 dataset.
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