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1
Preface

Our present knowledge about the elementary constituents of matter and their interactions is
described by the Standard Model (SM)§ of particle physics (Ch. 2). In particle physics, nearly all
the measurements are compatible with the SM. Hence, it is a very successful theory. Nevertheless,
it has some limitations and therefore many searches for physics beyond the SM are ongoing.

The decays of the B0
s and B0 mesons into two muons are well suited to detect physics beyond

the SM. Among others, members of the ATLAS collaboration are measuring the branching ratios
for these decays (Ch. 5) with their detector (Ch. 4) at the LHC (Ch. 3). Since these decays are
rare, a multivariate classifier is employed in this analysis to suppress the background events. The
classifier is partially trained on Monte Carlo (MC) samples. The MC samples are known to have
some insufficiencies, e.g. due to a slightly different kinematic regime in the simulation. In order
to determine corrections, the simulated signal of a reference channel is compared to the signal in
the data of the reference channel. The signal data distribution needs to be extracted from data,
which also contains background events. Up to now the sideband subtraction technique is used
for this purpose [Lyo86]. This is the technique commonly used in High Energy Physics (HEP) for
the purpose of statistically separating signal and background events. It requires a signal region
to be defined, as well as sideband regions, where the number of background events dominates the
number of signal events. The cuts defined to separate the regions become a source of systematic
uncertainty which requires additional studies.

The purpose of this thesis is to explore the sPlot [PD05] technique and unbinned maximum likeli-
hood fits to events weighted by this method. In contrast to the sideband subtraction technique,
using this technique does not require the definition of signal and sideband regions. Instead,
weights, called sWeights, serve to separate signal and background distributions. Based on a
fit to a discriminating variable distribution, a signal and a background sWeight are calculated
for each event. Applied to a control variable these weights recover the corresponding signal or
background distribution of this variable. No knowledge about the shapes of the signal and back-
ground Probability Density Functions (PDFs) of this variable is required. Taking the advantage
mentioned above into account, the ATLAS B0

(s) → µ+µ− analysis team considers replacing the
sideband subtraction technique in their analysis by the sPlot technique.

§A list of all acronyms used can be found in Appendix C.
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1 Preface

In many cases it is needed to estimate the parameters of the PDFs, that describe the disentangled
signal and background distributions. Such a case is the measurement of the B0

s -meson lifetime.
This lifetime may be estimated by an unbinned maximum likelihood fit to the events weighted
by the signal sWeights. Unbinned maximum likelihood fits and all other statistical methods
relevant for this thesis are introduced in Chapter 6. However, there is a caveat about unbinned
maximum likelihood fits in the presence of sWeights: the uncertainties of the fitted parameters
obtained by the standard procedures, as e.g. used by Minuit [JR75], must be corrected. Three
methods to perform this uncertainty correction are studied in this thesis (Ch. 7). The first
uncertainty correction method proposed by Eadie et al. [EDJ71] is referred to as the squared
weights correction. Two uncertainty correction methods, referred to as asymptotic correction
part one and asymptotic correction part two, were proposed recently by Langenbruch [Lan19]. The
studies of these methods are based on pseudo experiments. Performing the pseudo experiments,
the RooFit [VK03] software toolkit is used as much as possible. The latter is well tested, as it
is widely used in HEP. The findings are summarized in Chapter 8.
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2
Introduction to elementary particle physics

The SM of particle physics is a combination of relativistic Quantum Field Theorys (QFTs) de-
scribing the elementary constituents of matter (Sec. 2.1) and their interactions (Sec. 2.2). Despite
its great success, there are limitations of the SM. A probe for physics beyond the SM, which is
relevant for this thesis, is presented in Section 2.4.

2.1 The elementary particles

Particles are categorized as fermions and bosons, based on their intrinsic property spin. Fermions
have half-integer spin quantum numbers. Their distribution over energy states is described by the
Fermi-Dirac statistics [Fer35; Dir26]. Therefore, two fermions can never have identical quantum
numbers, which is known as the Pauli exclusion principle [Pau25]. Bosons have integer spin
quantum numbers and are distributed over the energy states according to the Bose-Einstein
statistics [Bos24; Ein05]. According to the SM, there exist 12 elementary fermions in our universe,
grouped in six quarks and six leptons as presented in Figure 2.1. Three of the six quarks have an
electric charge of +2/3 e, referred to as up type quarks and three an electric charge of −1/3 e,
referred to as down type quarks. The six different types of quarks are denoted as quark flavors.
Each of the six quark flavors comes in three different types, which differ in their color charges.
Leptons include the electron, the muon and the tau lepton, as well as their neutrino counterparts.
In the context of the SM, neutrinos are massless.

In Figure 2.1 the 12 fermions are presented in three columns, referred to as generations. With
each generation, the mass of the elementary particles increases. The second and third genera-
tion elementary particles are not stable and eventually decay into elementary particles of the
first generation. All ordinary matter in our universe consists of the first generation elementary
particles only. For each of the fermions listed, an antimatter complement exists. It has the same
mass but the charge-like properties have opposite sign. Charge-like properties are e.g. the elec-
tric charge and the color charge. The bosons shown on the right-hand side of Figure 2.1 are
discussed in the next section.

9



2 Introduction to elementary particle physics

Figure 2.1: Elementary particles of the Standard Model, where S refers to the spin quantum number, Q to the
electric charge and m to the mass. The interactions, in which the particles participate, are indicated
for each particle by colored circles [Bar15]. Numeric values are taken from the PDG 2014 Particle
Listing [Oli+14].

2.2 The fundamental interactions

There are four fundamental interactions, also called forces, for the 12 fermions, namely the
electromagnetic, the weak, the strong and the gravitational interaction. The description of the
latter is not part of the SM. Compared to the other forces acting on the fermions, the influence
of gravity is negligibly small. For high interaction energies, a unified description of the electro-
magnetic and the weak interaction exists. All interactions between the fermions are realized by
the exchange of the mediating bosons, given on the right-hand side of Figure 2.1. Each of the
interactions relates to a certain property of the interacting particles, as e.g. the electromagnetic
force relates to the electric charge.

Mathematically, the SM is usually formulated in terms of a Lagrangian density, in which the
particles are represented as fields. The terms of the free Lagrangian density, describing non-
interacting particles, are divided in two categories. The kinetic terms comprise the derivatives
of the fields and the mass terms comprise quadratic expressions of the fields. The interaction
terms are introduced into the free Lagrangian density by imposing a SU(3) × SU(2) × U(1)Y

gauge symmetry on the free Lagrangian density, where Y stands for the hypercharge. To keep
the Lagrangian density invariant under these symmetry transformations, additional fields are

10



2 Introduction to elementary particle physics

introduced. After quantization, they yield the mediating bosons, also known as gauge bosons.
The number of bosons mediating an interaction is equal to the number of generators of the
corresponding symmetry group.

SU(3) is the symmetry group of Quantum Chromodynamics (QCD). This group has eight gen-
erators, corresponding to eight gauge bosons, called gluons. The gluons carry a color charge
as well as an anti-color charge and couple to the color charge. Hence, only quarks and gluons
participate in the strong interaction, as indicated by the circles colored like the gluons in Fig-
ure 2.1. A special property of QCD is color confinement: only particles in a color singlet state
are observed. Thus, only bound states of quarks are observed, rather than bare quarks. These
composites are referred to as hadrons. They are classified as mesons and baryons, depending
on whether they are formed by two or three quarks. Examples for mesons are the B0 and B0

s

mesons, which have the quark content bd and bs, respectively. The proton and the neutron are
examples for baryons with the quark content uud and udd, respectively.

The electroweak interaction has the symmetry SU(2)×U(1)Y. It is the unified description of
the electromagnetic and the weak interaction [Gla59; SW59; Wei67]. The two forces are different
manifestations of the unified force if the interaction energy is below the electroweak scale,
which is around 246 GeV. Above this energy there are four massless gauge bosons. Below this
energy the SU(2)×U(1)Y symmetry is spontaneously broken to a U(1)EM symmetry due to the
vacuum expectation value of the Higgs field. This results in three mass terms, which, after a
transformation, can be identified as the mass terms of the W+, W− and the Z bosons. These are
the gauge bosons of the weak interaction. This phenomenon is known as Higgs mechanism [Hig64;

EB64]. In case of the broken electroweak symmetry, the elementary fermions acquire a mass term
proportional to the vacuum expectation value of the Higgs field, by coupling to this field. The
Higgs boson, presented at the bottom right of Figure 2.1, is the boson associated with the Higgs
field. It was discovered by the ATLAS and CMS collaborations in 2012 [ATL12a; CMS12] and is the
last fundamental elementary particle predicted by the SM, which was discovered.

The mediating bosons of the weak interaction, the W± and the Z0 bosons, have a mass greater
than 80 GeV. Therefore, the reach of the weak interaction is of subatomic scale. The weak in-
teraction couples to a property called weak isospin. All 12 fermions can interact via the weak
force, indicated by the circles colored like the Z0 in Figure 2.1. Only by the weak interaction,
more precisely by the W± bosons, the quark flavor can change. The amplitudes for such charged
weak transitions across the quark generations are proportional to the elements of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix [Cab63; KM73]. The complex phase of the CKM matrix allows
for the violation of the CP symmetry in weak interactions. The weak interaction is e.g. re-
sponsible for the β-decay, which is the conversion of a neutron into a proton by the transition
d → uW−.

11



2 Introduction to elementary particle physics

The U(1)EM symmetry group is the symmetry of Quantum Electrodynamics (QED), which is
the theory describing the electromagnetic interaction. This group has only one generator, which
relates to the massless photon. Since the photon is massless and neutral, the electromagnetic
force has an infinite reach. It couples to the electric charge of particles. Except for the neutrinos,
which have zero electric charge, all fundamental fermions interact via the electromagnetic force,
as indicated by the circles colored like the γ in Figure 2.1. It is this force, that permits the
existence of atoms, by binding the electron cloud to the nucleus.

2.3 Limitations of the Standard Model

The SM is very successful in predicting and explaining measurement results of particle physics
experiments. But there are some puzzles. One of them is the neutrino mass, which is zero in the
context of the SM. However, neutrino oscillations [SNO02; Sup98] prove, that each of the neutrino
flavors has a different, yet still unknown, mass.

Furthermore, the SM does not appear to explain all matter found in the universe. Astronomical
observations suggest that there is additional matter in the universe, which interacts only weakly
or even not at all with ordinary matter. Thus it is called dark matter. Such observations are
e.g. the velocity of galaxy arms, which is much higher than Keplers second law predicts [CS00],

or the differences observed when determining the mass of galaxies by gravitational lensing and
X-ray data [Nat+17]. According to present estimates 84 % of the matter in the universe is dark
matter [Pla14].

For these reasons – among others –, there are many efforts to develop theories beyond the SM,
to check them experimentally, and to discover new phenomena, which are not yet described by
a theoretical model. One model predicting additional particles is the Minimal Supersymmetric
Standard Model (MSSM) [BT06]. A probe for physics beyond the SM, as e.g. described by the
MSSM, is presented in the subsequent section.

2.4 The rare decays B0
s → µ+µ− and B0 → µ+µ−

A system well suited to probe models such as the MSSM, are the B-mesons, e.g. the decays
B0

s → µ+µ− and B0 → µ+µ−. These decays belong to a category of processes called Flavor
Changing Neutral Currents (FCNCs). The FCNCs are processes that change the flavor content
of particles but leave their electric charge unchanged. In the SM, FCNCs are forbidden at tree
level. For example, a transition from a b-quark to a s-quark can not happen via exchange of a
Z -boson. However, such transitions are possible at one-loop level (Figs. 2.2a and 2.2c).

12



2 Introduction to elementary particle physics
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Figure 2.2: (a) and (c) some of the possible B0

s → µ
+
µ

− Feynman diagrams in the SM. (b) and (d) examples of
B0

s → µ
+
µ

− Feynman diagrams with contributions from generic, non-SM particles, labeled X0 and
X+.

In such loops also non-SM particles can contribute (Figs. 2.2b and 2.2d), even if they are too
heavy to be produced directly. This could lead to an enhanced or suppressed branching fraction
for the final state, depending on whether the interference of the different diagrams is constructive
or destructive.

The decays B0
s → µ+µ− and B0 → µ+µ− are strongly suppressed in the SM, i.e. they are

suppressed by the Glashow-Iliopoulos-Maiani (GIM) mechanism [GIM70] and by requirements on
the helicity of the final states: the B0

(s) are spin-less and therefore the muons are required to
have the same helicity.

The branching ratios of the B0
s → µ+µ− and B0 → µ+µ− are measured by the ATLAS collabo-

ration. This analysis is presented in Chapter 5.
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3
The Large Hadron Collider

In this chapter the specifications (Sec. 3.1) and the operation in past and future of the Large
Hadron Collider (LHC) (Sec. 3.2) are presented.

3.1 Specifications

With a circumference of 26 660 m, the LHC is the largest circular hadron collider built so
far [Brü+04]. It is located in the former Large Electron-Positron Collider (LEP) tunnel, 50 m
to 175 m beneath the surface. The tunnel crosses the border between Switzerland and France,
close to Geneva. The LHC belongs to the European Laboratory for Particle Physics (CERN).

The LHC is used to accelerate and collide mainly protons but also heavy ions. It is not capable
of accelerating a proton from rest up to the final energy of 7 TeV [Brü+04]. Hence, the protons
are passed through an accelerator chain, prior to injection into the LHC. At CERN this chain is
composed of the Linear Accelerator (LINAC), the PS-BOOSTER, the Proton Synchrotron (PS)
and the Super Proton Synchrotron (SPS) (Fig. 3.1). The protons are accelerated in bunches,
containing up to 1.15 × 1011 protons [Brü+04]. At four interaction points the two antiparallel
beams cross and the proton bunches collide. The collisions happen with a frequency of 40 MHz.
The four main experiments, located at the four interaction points are:

• ALICE (A Large Ion Collider Experiment) [ALI08], focusing on heavy ion collisions to study
e.g. the quark-gluon plasma,

• ATLAS (A Torodial LHC Apparatus) [ATL08], a general purpose experiment (Ch. 4),

• CMS (Compact Muon Solenoid) [CMS08], a general purpose experiment as well and

• LHCb (Large Hadron Collider beauty) [LHC08], designed to study B-mesons and CP viola-
tion.

An important property of an accelerator is its instantaneous luminosity. For two opposite beams
it is defined by

L = f n
N2

A
, (3.1)

14



3 The Large Hadron Collider

Figure 3.1: Sketch of the CERN accelerator complex, including the LHC and the injecting accelerators. The
position of the four major experiments at the four interaction points is indicated as well. [Haf13]

where f is the revolution rate, n the number of bunches, A the cross-section area of the bunches
and N the number of particles per bunch. The LHC was designed to deliver an instantaneous
luminosity of 1034 cm−2 s−1. The luminosity integrated over time is denoted by L. For a given
cross section σb of a physics process (e.g. B0

s → µ+µ−), the number of events Nb, that are
produced on average, is calculated by

Nb = σb L . (3.2)

Whether a rare process, such as B0 → µ+µ−, can be discovered or not depends on the integrated
luminosity as long as the energy threshold for the process of interest is reached.

3.2 Overview of LHC operation and future plans

The LHC started operation in 2009 [CER09]. The first period of operation, which ended in 2013,
is referred to as Run-I. In Run-I, 75 % of the design instantaneous luminosity was reached
(Fig. 3.2). During Run-II even twice the design instantaneous luminosity was reached, which

15



3 The Large Hadron Collider
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Figure 3.2: Overview of the operation of the LHC from 2009 until 2040 as of August 2020 [HiL20].

led to a total integrated luminosity of 156 fb−1 at the end of Run-II [ATL19b]. The periods of
operation are interrupted by long shutdowns (Fig. 3.2), used for upgrades of the LHC and the
detectors.

A major upgrade of the LHC is planned for the Long Shutdown 3 (LS3), scheduled for 2025 to
2027 (Fig. 3.2). After that, the LHC will be referred to as High Luminosity LHC (HL-LHC) [G+17].

The HL-LHC is designed to deliver an instantaneous luminosity of 5 × 1034 cm−1 s2, which is five
times the design instantaneous luminosity of the LHC. This poses a great technical challenge,
e.g. w.r.t. beam stability, beam-beam interaction effects and beam-induced heat load on the
cryogenic system [Ard+16]. The design instantaneous luminosity of the HL-LHC corresponds to
an integrated luminosity of 3000 fb−1 in 12 years of operation [G+17]. Without the upgrade to
the HL-LHC, it would not be beneficial to operate the LHC beyond Run-III due to the slower
increase of the discovery potential. It was estimated, that after 2020, the running time required
to reduce the statistical uncertainty of certain measurements by a factor two will grow to more
than ten years, if the LHC would not be upgraded [G+17].
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4
The ATLAS experiment

The ATLAS (A Torodial LHC Apparatus) collaboration, founded in summer 1992, has at the
moment about 5500 members from nearly 100 nations, with about 2900 being signing authors.
The members of this collaboration developed and built the ATLAS detector (Fig. 4.1) at the
LHC (Fig. 3.1). Since 2009 they operate, maintain and upgrade this detector. The ATLAS detector
is a general purpose detector to address open questions in particle physics. With a length of
44 m and a diameter of 25 m, it is the largest detector at the LHC. It is composed of several sub-
detectors. The Inner Detector (Sec. 4.1), the calorimeters and the Muon Spectrometer (Sec. 4.2)
are the main groups of sub-detectors. The calorimeters, namely the Liquid Argon Calorimeter
and the Hadronic Tile Calorimeter, are less relevant for the B0

(s) → µ+µ− analysis (Ch. 5) and
are therefore not presented in the subsequent sections.

The rate of collision events in the ATLAS detector is very high (40 MHz). For reasons of limited
computing resources, disk space and read-out bandwidth, only events, that pass the trigger
selection (Sec. 4.3), are processed (Sec. 4.4). Future upgrades of the ATLAS detector to cope
with the increased luminosities in the HL-LHC era are presented in Section 4.5.

The right-handed ATLAS coordinate system has its origin at the nominal interaction point at
the center of the detector. The z-axis is parallel to the beam axis and the x-axis points to the
center of the LHC. The angle around the beam axis, in the x-y plane, is denoted by φ and the
polar angle to the beam axis is denoted by θ. The angle θ is often expressed in terms of the
pseudorapidity η = ln(tan θ/2).
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Figure 4.1: Cut-away view of the ATLAS detector system with the individual sub-detectors labeled [Peq08].

4.1 Inner detector

The Inner Detector (ID) is a group of three sub-detectors (Fig. 4.2a): the pixel detector, the
Semiconductor Tracker (SCT) and the Transition Radiation Tracker (TRT). It is placed inside a
2 T solenoid magnet with a diameter of 2.4 m (Figure 4.2b). The solenoid magnet bends the tra-
jectories of charged particles in the x-y plane, which are tracked by the ID. Based on the particle
tracks, the momenta of the particles as well as the potential interaction vertices are determined.

The pixel detector [WH98] is the sub-detector closest to the beam pipe. It consists of four lay-
ers in the barrel region, including the Insertable B-Layer (IBL) [Cap+10], and three disks in the
endcap regions. The IBL was added during Long Shutdown 1 (LS1) between the original pixel
detector and a new beam pipe with reduced diameter. It improves the vertex determination and
the identification of hadrons containing a b-quark. Compared to the original pixel detector, the
IBL is realized with more advanced technology and has a pixel size reduced to 50 µm × 250 µm
instead of 50 µm × 400 µm. The latter results in a spatial resolution of 10 µm × 115 µm for the
original pixel detector. Overall there are roughly 92 × 106 read-out channels.

The SCT [ATL97a] covers the region with radii from 30 cm to 55 cm (Fig. 4.2a). It is a silicon detec-
tor like the pixel detector. However, to cover an area of 60 m2, microstrips are employed instead of

18



4 The ATLAS experiment

(a) (b)
Figure 4.2: (a) Side view of the ID in the barrel region [ATL16b]. (b) Overview of the ATLAS detector magnet

system [Pea16]. The ID is located inside the solenoid.

pixels. A typical strip sensor features a microstrip every 80 µm and has a size of 6 cm×6 cm. Four
such strip sensors form a SCT module. For this, two strip sensors are daisy-chained in each case.
The sensor chains are mounted on each side of a thermally conducting thermal pyrolytic graphite
baseboard. They are rotated against each other by an angle of 40 mrad. This angle allows for spa-
tial resolution along the strips. There are 2112 SCT modules in the barrel region, distributed over
four layers. In the endcap regions, 1976 SCT modules are distributed over 9 disks on each side.

The straws of the TRT [ATL97a] fill the outer region of the barrel from 55 cm to 108 cm ra-
dius. They are proportional drift tubes with a diameter of 4 mm and are filled with Xenon-rich
gas. The space between the straws is filled with a polypropylene transition radiator material.
The photons emitted by the radiation material are detected by the gas tubes. The intensity of
the emitted photons is used to improve particle identification, especially the identification of
electrons. Furthermore, the TRT contributes significantly to a precise momentum measurement.

4.2 Muon Spectrometer

The Muon Spectrometer (MS) [ATL97b] is the outermost group of sub-detectors. It is utilized
for momentum measurements of highly energetic muons within a relative uncertainty of a few
percent and a time measurement within a precision of a few ns. The momentum measurement
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relies on the inhomogenous 4 T magnetic field of the barrel and endcap toroids (Fig. 4.2b), which
bends the muon trajectories in the r-z plane.

The ability to trigger on muons is important for many analyses of physics processes, e.g. H → 4`
or B0

(s) → µ+µ−. In order to use the MS in the trigger decision, its timing resolution must be
much smaller than the time between two bunch crossings, which is 25 ns. Such a timing precision
is achieved with Resistive Plate Chambers (RPCs) in the barrel region (η < 1.05) and Thin Gap
Chamberss (TGCs) in the endcap regions (1.05 < η < 2.7).

In order to measure the momenta of muons, especially of highly energetic muons with momenta
of 1 TeV or higher, with a relative uncertainty of a few percent, a spatial resolution of 0.05 mm
must be achieved. Furthermore, the strength of the local magnetic field must be known with
a relative uncertainty of at most 1 %. This is achieved by deploying Monitored Drift Tubess
(MDTs). The MDTs are aluminum drift tubes with a diameter of 30 mm. They are monitored for
deformations by an alignment system. The different layers of MDTs are also monitored by an
optical alignment system. Along the MDTs, magnetic sensors measure the strength of the local
magnetic field. With these measures the requirements on spatial resolution and magnetic field
strength are achieved.

4.3 Trigger system

In many of the collision events happening at the LHC, no physics processes, that are of interest
for physicists, occur. Therefore, a trigger system is designed to accept only events of potential
interest. On the other hand, the event rate has to be lowered such, that the available computing
resources, storage capacities and the read-out bandwidth are sufficient.

Since Run-II, the ATLAS detector has a two level trigger system, as presented in Figure 4.3. The
first level (L1) is implemented in hardware. The trigger decision is based on ionisation patterns
in the MS and energy deposits in the calorimeters. Out of the 4 × 107 events per second only
about 105 are accepted. When an event was accepted, the corresponding Region of Interest (RoI)
is passed to the High Level Trigger (HLT). The HLT is a software trigger system and reconstructs
a partial event (Sec. 4.4) within the RoI. It reduces the event rate by a factor of 100. Given the
mentioned constraints, only the resulting reduced amount of events is recorded and stored.
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Figure 4.3: Overview of the ATLAS trigger and DAQ system, based on Ref. [Bor+15].

4.4 Event reconstruction, simulation and computing

The aim of the event reconstruction is to identify all the physics objects, such as e.g. muons,
missing energy and jets, in the raw data. The offline event reconstruction is performed in two
steps. A first reconstruction is performed for each part of the detector. For example, tracks
and vertices are identified in the raw data of the ID. These results are fed into a combined
reconstruction to identify the physics object. E.g. muons are identified by combining track
segments from the MS and the ID. The full offline event reconstruction takes approximately
25 s per event. The online event reconstruction uses the same software as the offline event
reconstruction. However, since the online event reconstruction uses faster algorithms, limits the
event reconstruction to regions of interest and rejects events early, the time needed to process
an event is reduced to 0.5 s.

The event reconstruction is not only applied to data, but also to MC samples. The MC samples
are produced by simulating physics processes, passing them through a simulation of the ATLAS

detector and finally reconstructing them with the same event reconstruction procedure used for
data. MC samples are crucial to understand detector effects and e.g. to study the distributions
of background events or to check how signals of yet unknown postulated decays or particles may
show up in the detector.

As the data of the three other main experiments at the LHC, the ATLAS data is distributed
to and processed in computing centers worldwide, which form the Worldwide LHC Computing
Grid (WLCG). The WLCG has a hierarchical structure. The highest instances in this hierarchy
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are the Tier-0 and Tier-1 computing centers, which store and process the raw data. The Tier-
2 computing centers host the data for the analyzes and provide computing resources to the
analyzers.

4.5 Detector upgrades

The upgrade of the LHC to the HL-LHC, as presented in Section 3.2, presents a major challenge
for the ATLAS collaboration. At the ultimate instantaneous luminosity of the HL-LHC, a pile-
up of about 200 is expected [ATL19a]. This means, that on average 200 proton-proton collisions
happen at once for a single bunch crossing. In contrast, the current ATLAS detector was designed
for a pile-up of 25 and operated at an average pile-up of about 37 during Run-II. Besides this,
the detector has to be much more radiation hard and support higher read-out rates. Therefore,
among other upgrades, most of the read-out electronics will be replaced, as well as the data
acquisition and trigger system. Two examples of other upgrade projects, the New Small Wheel
(NSW) (Sec. 4.5.1) and the Inner Tracker (ITk) (Sec. 4.5.2) are presented subsequently.

4.5.1 New Small Wheel

A replacement of the muon small wheels by the NSWs is ongoing during Long Shutdown 2 (LS2).
The muon small wheels and the muon big wheels are used to track muons, that leave the detector
in the endcap regions. They also provide the capability to trigger on such muons. Running at
instantaneous luminosities higher than the design instantaneous luminosity results in neutrons
emitted from activated material. These neutrons may be identified as muons in the muon big
wheels. The muon small wheels could be used as a veto, by matching the tracks. However, the
spatial resolution of the muon small wheels is not sufficient. This problem is solved by the NSWs.

4.5.2 Inner Tracker

The ID will be replaced by an all-silicon detector, the ITk. The inner part will be a 5 layer pixel
detector, surrounded by strip sensors. The pixel size will be reduced to 50 µm × 50 µm. It is
planned to cut the material budget used for the ITk down by half, compared to the present pixel
detector. This reduces the energy losses of particles, when passing through the detector, and in
turn improves the accuracy of the particles momentum and energy measurements.
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5
Measurement of the B0

(s) → µ+µ− branching fractions with the
ATLAS experiment

In the present chapter the context of the studies in this thesis is provided, which is the mea-
surement of the branching fractions of B0

(s) → µ+µ− § based on ATLAS data taken in 2015 and
2016 [ATL18]. As pointed out in Section 2.4, these decays are an important probe for new physics.

The first section is about the measurement principle, followed by Section 5.2 on the data and
the MC samples. The MC samples were introduced in Section 4.4. For data the trigger settings
and the event selection are presented, whereas for the MC samples the reweighting is explained,
which necessitates the introduction of the sideband subtraction technique. This technique could
be replaced by the sPlot technique, studied in Chapter 7 of this thesis. A description of the
background components in the B0

(s) → µ+µ− analysis and the background rejection technique
applied are provided in Section 5.3. The background rejection is accomplished using a multi-
variate classifier, namely a boosted decision tree (BDT). In Section 5.4 the determination of the
quantities required to calculate the branching fractions for B0

(s) → µ+µ− is discussed. In the last
section the final results of the analysis and conclusions are presented. In addition, a combined
result from ATLAS, CMS and LHCb is reported.

5.1 Measurement principle

The current predictions for the branching fractions from the SM theory are [BBS19]:

B(B0
s → µ+µ−) = (3.66 ± 0.14) × 10−9 ,

B(B0 → µ+µ−) = (1.03 ± 0.05) × 10−10 .

The relative uncertainties for the predictions are below 5 %.

The branching fractions are measured relative to the decay B+ → J/ψK+ (J/ψ → µ+µ− ),
which is abundant compared to B0

(s) → µ+µ− decays. It can be triggered using a similar dimuon

§Throughout this thesis B0
(s) is a shorthand notation for B0 and B0

s . Consequently, B0
(s) → µ

+
µ

− reads
B0

s → µ
+
µ

− and B0 → µ
+
µ

−.
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trigger and has a well-known branching fraction. Performing a relative measurement leads to a
cancellation of some uncertainties common to both channels, e.g. the uncertainty of the abso-
lute luminosity. The absolute branching fractions are then calculated by multiplying the world
average values for B(B+ → J/ψK+) and B(J/ψ → µ+µ− ) to the measured relative branching
fractions:

B(B0
(s) → µ+µ−) =

Nd(s)
ε
µ

+
µ

−
×
[
B
(
B+ → J/ψK+

)
× B(J/ψ → µ+µ− )

] εJ/ψK+

N
J/ψK+

× fu
fd(s)

, (5.1)

where Nd(s) denotes the extracted number of signal events, N
J/ψK+ the number of extracted

reference channel events and fd, fs, fu the probability, that a B meson hadronizes into a B0 ,
B0

s or B+. ε
µ

+
µ

− and ε
J/ψK+ are the values of acceptance times efficiency for the final states,

accounting for losses due to the phase space fiducial volume chosen and for reconstruction effects.

5.2 Data and MC sample preprocessing

In the next section (5.2.1) the trigger settings and the event selection based on reconstruction
conditions are described. This is followed by a short introduction to the sideband subtraction
technique (5.2.2), which provides the motivation for the studies of the sPlot technique in this
thesis. It is a prerequisite for the third section (5.2.3), in which the preparation of MC samples,
that are consistent with data, is presented.

5.2.1 Trigger settings and event selection

Three different data sets are used in the analysis, containing the signal channels B0
s → µ+µ−

and B0 → µ+µ−, the reference channel B+ → J/ψK+ (J/ψ → µ+µ− ) and the control channel
B0

s → J/ψφ (J/ψ → µ+µ− , φ → K+K− ). The signal region in the B0
(s) → µ+µ− data sample,

defined as the interval from 5166 MeV to 5526 MeV in the invariant dimuon mass (mµµ), is
blinded. This prevents the analyzer from (unintentionally) optimizing the event selection towards
a favored result. The sideband regions are defined as the dimuon mass interval from 4766 MeV
to 5966 MeV, excluding the blinded region. An example of the signature for a signal event in
the detector is presented in Figure 5.1.

The following trigger settings maximize the covered phase space, given that only a limited
amount of data can be recorded. The first-level-dimuon trigger [ATL17b] is passed only by muon
pairs with one muon having a transverse momentum pT>4 GeV and the other having pT>6 GeV.
The high level trigger confirms the muon pT threshold and selects only muon pairs with an
invariant mass in the range 4 GeV to 8.5 GeV.
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Figure 5.1: Detector signature of an B0
(s) → µ

+
µ

− event candidate recorded with the ATLAS detector [ATL20].

The primary vertex and the B decay vertex are shown in the circle at the right side.

After the full reconstruction of the events additional constraints are imposed on the muons as
well as on the B candidates. For example, one hit in the pixel, two hits in the semiconductor
tracker and reconstruction in the Muon Spectrometer are required for muon tracks. The B
candidates are required to have a χ2 per degree of freedom smaller than 6 for the decay vertex
fit. Their pT must be larger than 8 GeV and the absolute value of the η smaller than 2.5.
Furthermore, collinearity requirements for the B candidate’s momentum ~pB are imposed. For
example, the angle between ~pB and the vector from the primary vertex to the decay vertex must
not exceed 1 rad. Additional constraints were applied to J/ψ and φ decays in the reference and
control channels.

Applying the selections above, a total effective integrated luminosity of 36.2 fb−1 was available
for the signal channel and 15.1 fb−1 for each of the other channels. After unblinding about 1 × 106

events were observed in the signal region, that passed this preselection. The final selection is
based on the BDT output variable as detailed in Section 5.3.2.

5.2.2 Introduction to the sideband subtraction technique

Prior to explaining the sideband subtraction technique itself, the terminology and the context
for the application of this technique is introduced here. An event is defined as a set of variables
describing a physical measurement. This could e.g. be the properties of a muon pair such as its
invariant mass, the transverse momenta of the muons etc. An event can have different origins,
which are denoted as species. In the simplest, non-trivial case there are two species, typically
called signal and background. The former could e.g. be the final state particles µ+ µ− K+ from
the B+ → J/ψK+ (J/ψ → µ+µ− ) decay and the latter a random combination of tracks, result-
ing in the same final state µ+ µ− K+. Variables in the events with known PDFs for all species are
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called discriminating variables. Control variables are defined as variables with unknown PDFs

for the species.

The sideband subtraction technique [Lyo86] is commonly used in HEP to statistically subtract
the background contribution from the total control channel distribution. To apply the sideband
subtraction technique, a discriminating variable is needed, which must not be correlated to
the control variables. In addition, a signal region and sideband regions must be defined for
the discriminating variable. In the sideband regions the background contribution should be
dominant, although it is possible to account for signal events leaking into the sideband regions
[Che19]. The first step in the application of the sideband subtraction technique is to perform a
fit of e.g. the signal and background PDFs to the discriminating variable distribution. Based on
the resulting PDFs and the fitted number of signal and background events, weights defined as

wi =


−1 ×

∫
signal region fbkg(x) dx∫

left sideband fbkg(x) dx+
∫

right sideband fbkg(x) dx , for event i in sideband region

1 , for event i in signal region
(5.2)

are applied to the ith event, where fbkg(x) represents the background PDF of the discriminating
variable x, with parameters extracted by the fit to the discriminating variable. The weights
effectively scale the background distribution of the control variable in the sideband regions to
the number of background events in the signal region and subtract the resulting distribution
from the distribution of the control variable in the signal region. Thus, an approximation of the
signal distribution of the control variable remains. This technique is used in the next section to
compare MC samples to data. To compare a signal MC sample to data, the background events
must be subtracted from data.

The cuts defining the signal region in the discriminating variable become a source of systematic
uncertainty, which requires additional studies. The advantage of the sPlot technique is, that it
avoids such cuts. In the next chapter the sPlot technique is studied to investigate whether it can
be used as a replacement for the sideband subtraction technique in the B0

(s) → µ+µ− analysis
with the ATLAS experiment.

5.2.3 MC samples, data-MC sample comparisons and reweighting

For each data sample there is a signal-only MC sample. A bb → µ+µ−X MC sample, also referred
to as continuum background MC sample, is used to study background processes. The events are
generated with Pythia8 [SMS07] and the detector response is simulated by Geant4 [Ago+03;

ATL10]. After that, the events are passed to the ATLAS reconstruction procedure [ATL08].

It needs to be ensured, that the MC samples resemble the data as closely as possible. Therefore
the MC samples are compared to data and corrected if necessary. First a pile-up reweighting is
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performed to adjust the distribution of the number of primary vertices in the MC sample to the
one observed in the recorded data. Next, scale factors to correct for differences in muon trigger
and muon offline reconstruction efficiencies are applied, which were obtained by a tag-and-probe
method on J/ψ candidates [ATL17a; ATL14].

To account for differences in the kinematic quantities between data and MC samples, corrections
for pB

T and ηB are applied. In order to obtain the corresponding event weights the B+ → J/ψK+

MC sample distributions for pB
T and ηB are compared to the B+ → J/ψK+ data after statis-

tically subtracting the background contribution from data. Observed differences are corrected
by reweighting the MC samples of the signal channels and the reference channel with weights
defined as wk = N

data/NMC for the kth pB
T or ηB bin [ATL12b]. These weights agree with weights

obtained from B0
s → J/ψφ decays, establishing that the reference channel weights are not only

applicable to B0 → µ+µ− decays but to the B0
s → µ+µ− decays too. Only half of the reference

channel data is used for this reweighting purpose. The other half is used to extract the B+ event
yield, in order to avoid correlations between event yield and weights.

5.3 Background treatment and final selection

The background events in the data of the B0
(s) → µ+µ− analysis are assigned to three categories,

which are described in the first section. The next section describes the BDT used for the final
event selection and the data-MC sample comparisons for its input variables, which are used to
assess systematic uncertainties.

5.3.1 Background components

There are three background categories: First, there is a peaking background, arising from B0
(s) →

hh′ decays, where h denotes a hadron, with both hadrons misidentified as muons. The largest
contribution arises from B0 → K±π∓ decays. The reconstructed mass from such decays is very
close to the B mass and lies within the signal region.

Second, the background category of Partially Reconstructed Decays (PRDs) is populated by
b-hadron decays with one or more final state particle missed in the reconstruction such that
only a muon pair is left, e.g. B0 → K∗0

µ+µ− decays, with K∗0 missed in the reconstruction or
b → cµ−ν → s(d)µ+µ−νν , with the muons reconstructed only . Those events accumulate in
the lower mass sideband of the B0

(s) → µ+µ− data with a tail reaching into the signal region.

Third, the continuum background is composed of events where muons from two uncorrelated
decays with an invariant mass falling into the analysis range are reconstructed as a muon pair.
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Studies from the signal mass sidebands show, that this background component can be described
by the bb → µ+µ−X MC sample. The efforts to reduce such events are described in the next
section (5.3.2).

5.3.2 Background reduction and data-MC sample comparisons on BDT input
variables

The final event selection aims primarily at reducing the number of continuum background events.
This is achieved by exploiting BDTs. They are trained, validated and evaluated on B0

(s) → µ+µ−

signal MC samples and data events in the sideband regions following a rotation scheme. Dividing
both samples in three subsamples, three BDTs are trained, each on its own subsample. After
validating each BDT on another subsample and finding that they provide statistically compatible
outputs, each BDT is evaluated on the remaining third subsample not touched by it before.
The BDTs have 15 input variables, taken from muon properties, B meson properties and other
event properties. The full list is provided in table 1 of [ATL18]. The two variables with the
highest separation power are ∆R and |α2D| (Fig. 5.2a). They are both related to the B meson
momentum ~pB and the vector from the primary vertex to the decay vertex ∆~x. |α2D| is the
absolute value of the angle between ~pB and ∆~x in the transverse plane and ∆R is the angular
distance between ~pB and ∆~x, defined as ∆R =

√
|α2D|2 + (∆η)2.

After verifying that the BDT output is not correlated with the dimuon mass, the final selection
was defined as a BDT output value larger than 0.1439, which corresponds to 72 % signal efficiency
and 0.3 % background efficiency. Events passing this selection are split into four BDT bins to
account for different background shapes and signal to background ratios. The four BDT bins are
indicated in Figure 5.2d.

A first data-MC sample comparison is carried out to check whether the continuum background
MC sample describes the sideband data correctly. In case of observed differences, the MC sam-
ple could not readily be used to derive the functional forms of the background distributions.
However, fair agreement is found as e.g. shown in Figure 5.2a.

Another data-MC sample comparison is conducted to assess the systematic uncertainties of the
efficiencies ε

µ
+
µ

− and ε
J/ψK+ introduced by differences in MC sample and data. Since the signal

region is blinded, only the MC samples of reference and control channel can be compared to their
data counterparts. In order to do this, binned Maximum Likelihood (ML) fits to their invariant
mass distributions divided into bins of pB

T and ηB are performed. The binning improves the
purity of the signal distribution after background subtraction, as the data is effectively divided
in categories of mass resolution and signal to background ratio. After subtracting the background
contribution by using the sideband subtraction technique, the differences between MC sample
and data are studied and considered as systematic uncertainties, as discussed in Section 5.4.2.
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Figure 5.2: In (a) the discriminating power of |α2D| is demonstrated, as well as the fair agreement between

sideband data and continuum MC sample, proving that this MC sample can be used to derive the
background PDFs for the continuum background contribution. In (b) the data-MC sample comparison
for |α2D| is shown, as an example for good agreement between background-subtracted B+ → J/ψK+

data and MC sample. (c) As a contrast the BDT input variable I0.7 with the largest discrepancy
between MC sample and data is shown. In (d) the BDT output with and without reweighting of
the I0.7 variable is presented. The red band indicates the systematic uncertainties for the efficiency
calculation, derived by the procedure described in Section 5.4.2. The boundaries of the four BDT bins
are indicated as vertical, dashed lines. All figures are taken from [ATL18] and its auxiliary material.
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Two examples of a data-MC sample comparison for BDT input variables are given in Figures 5.2b
and 5.2c, including the B isolation variable I0.7 with the largest discrepancies observed and the
highly discriminating variable |α2D|.

5.4 Event yield extraction and efficiency determination

Calculating the branching fractions according to Equation (5.1) requires the extraction of the
following quantities: N

J/ψK+ , the efficiency ratio ε
J/ψK+/ε

µ
+
µ

− and the signal event yields Nd(s),
which are presented in this order in the three sections following.

5.4.1 Reference channel event yield extraction

The reference channel event yield is extracted from an unbinned extended ML fit to the invari-
ant mass distribution of J/ψ K+. The functional forms for the signal and background PDFs are
taken from the MC sample. At first, only the MC sample is fitted to assess the shape parameters.
Then the MC sample and the data distribution are fitted simultaneously with shape parameters
constrained from the previous fit to the MC sample only, except for the continuum background,
whose shape parameters are unconstrained. The event yield parameters are unconstrained, too.
Differences between MC sample and data in the mass scale and resolution can arise from imper-
fections of the detector modeling and are accounted for by adding free parameters for the mass
scale and resolution to the fit. The fit result is shown in Figure 5.3a.

5.4.2 Efficiency ratio determination

The efficiencies ε
µ

+
µ

− and ε
J/ψK+ from Equation (5.1) are obtained from MC samples, since the

information about the true identity of the event is required. Both, the reference channel and the
signal channel events, were analyzed in the fiducial B meson region, defined as pB

T> 8 GeV and
|ηB| < 2.5, which constitutes the acceptance for the B meson. The acceptance for the leading
and trailing muon in the final state is pµl

T > 6 GeV and p
µt
T > 4 GeV. Furthermore, ε

J/ψK+ and
ε
µ

+
µ

− include trigger, reconstruction and selection efficiencies; see [ATL18] for the details.

The largest systematic uncertainty of the efficiency ratio arises from discrepancies between
MC sample and data in the BDT input variables, as mentioned in Section 5.2 and shown for
few examples in Figures 5.2a to 5.2c. They are investigated by reweighting the MC sample for
B0

(s) → µ+µ− and B+ → J/ψK+ for each input variable by the ratio of the sideband subtracted
B+ → J/ψK+ data and the corresponding MC sample. Only for the isolation variable I0.7 the
weights for the B0

(s) → µ+µ− channels are taken from B0
s → J/ψφ, since this isolation variable
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Figure 5.3: In (a) the results of the fit to half of the reference channel B+ → J/ψK+data is presented. In (b)

the fit to the B0
(s) → µ

+
µ

− data in the highest BDT bin is shown. The fit results for B0 → µ
+
µ

−

and B0
s → µ

+
µ

− are summed in the red dashed-and-dotted line. The PRDs (blue dashed line) are
referred to as b → µ

+
µ

−
X. The brown, dotted curve for the peaking background lies very close to

the horizontal axis and is hardly visible [ATL18].

is based on charged tracks and differences are expected for B+ and B0 . The impact of the
reweighting on the BDT output is shown in Figure 5.2d.

5.4.3 Signal event yields extraction

The B0 → µ+µ− and B0
s → µ+µ− event yields are extracted from an unbinned extended ML

fit to the signal invariant dimuon mass. The data is divided in four BDT bins, to account for
differences in the signal to background ratio and changes in the background shape. All data in
the four BDT bins are fitted simultaneously.

The fit model has four components. The signal PDFs are both described by a double Gaussian
PDF. The continuum background contribution is described by a PDF with linear dependence on
the invariant dimuon mass. The other components are the peaking background and the PRDs,
which are modeled by a double Gaussian PDF and an exponential PDF respectively. For each
component, except the continuum background, the shape parameters are constrained from the
MC sample. The event yields are not constrained and may become negative. The fit result in
the highest BDT bin is shown in Figure 5.3b.

5.5 Results for the branching fractions

The final results for the branching fractions are obtained by a maximum likelihood fit. The yields
Nd and Ns in the likelihood are replaced by the corresponding branching fractions by rearranging
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Figure 5.4: In (a) the likelihood contour in the B0
s → µ

+
µ

−−B0 → µ
+
µ

− plane for LHC Run-I, Run-II data
taking period and the combination of both is provided [ATL18]. The SM expectation is given in red.
In (b) the combined likelihood for ATLAS, CMS and LHCb is given [ACL20].

Equation (5.1). The branching fractions are then fitted simultaneously. The resulting likelihood
contours are shown in Figure 5.4a.

The analysis presented here has previously been carried out with data from the LHC Run-I data
taking period [ATL16a]. The results are embodied by the green likelihood contour (Fig. 5.4a).
The blue line presents the results of the analysis presented in this chapter. Obviously, the
likelihood contours are covering areas with negative branching fractions for B0 → µ+µ−, which
are unphysical. Therefore, a Neyman construction [Ney37] was considered in both analyses.

To shorten the discussion of the results, only the values of the branching fraction obtained from
the likelihood combination of the two analyses are presented here. The combined result for the
decay of B0

s is [ATL18]:

B(B0
s → µ+µ−) =

(
2.8+0.8

−0.7
)

× 10−9 .

For the decay of B0 an upper limit of

B(B0 → µ+µ−) < 2.1 × 10−10

at 95 % Confidence Level (CL) was obtained [ATL18].
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The combination of the results, as shown in Figure 5.4b, from ATLAS [ATL18], CMS [CMS20] and
LHCb [LHC17] for the full LHC Run-I and partial Run-II yields [ACL20]

B(B0
s → µ+µ−) =

(
2.7+0.4

−0.3
)

× 10−9

and the upper limit for the branching fraction on B0
s → µ+µ− at 95 % CL is

B(B0 → µ+µ−) < 1.6 × 10−10 .

In summary, an upper limit was established for the B0 → µ+µ− decay. The measurement by
ATLAS is compatible with the standard model in the B0

s → µ+µ−−B0 → µ+µ− plane within
2.4 standard deviations and the combination from ATLAS, CMS and LHCb within 2.11 σ. There
is no evidence for physics beyond the SM yet.
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6
Statistical methods and software toolkits

The methods introduced in this chapter are needed for the studies in Chapter 7, where unbinned
maximum likelihood fits to weighted events produced by the sPlot technique are discussed.
Special attention is paid to the uncertainties of the fitted parameters.

Therefore, the first method explained (Sec. 6.1) is the sPlot technique, used to calculate event
weights, which applied, separate signal and background distributions. The calculation of the
weights requires a parameter estimation with the unbinned Maximum Likelihood (ML) method,
discussed in Section 6.2. This method can also be used to estimate the parameters of weighted
distributions produced by the sPlot technique. Therefore, the discussion includes the treatment
of per-event weights in unbinned ML fits, as well as the calculation and correction of the fitted
parameter uncertainties. To check the coverage of the uncertainties determined from the max-
imum likelihood fits, pulls are used. They are discussed in Section 6.3. In the last section an
overview of the software toolkits and of numerical techniques used for the studies in Chapter 7
is provided.

6.1 The sPlot technique

The sPlot technique [PD05] is used to statistically separate the distributions of the different
species§ for a control variable by applying per-event weights, which are based on a fit to the
discriminating variable distribution. This fit is presented in Section 6.1.1 and the weights, called
sWeights are introduced and described in Section 6.1.2. In Section 6.1.3 it is pointed out where
care must be taken in the application of the sPlot technique to obtain the correct result. A list
of the most important symbols used in this section is provided in Table 6.1.

6.1.1 Discriminating variable fit

Similar to the sideband subtraction technique, introduced in Section 5.2.2, the sPlot technique
is based on a fit to a discriminating variable distribution. The discriminating variable PDF is a

§The terms species, control and discriminating variable have already been introduced in Section 5.2.2.
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Table 6.1: List of the most important symbols used for the description of the sPlot technique in Section 6.1.

Symbol Definition

y Discriminating variable
x Control variable
fi(ye|~λ) Component for species i of the discriminating variable PDF evaluated for the discriminating

variable value of event e
N Total number of events in the data set
Ns Number of species in the data set
N i,j,k,... Average number of events in species i, j, k, ...
V

yields
ij Elements of the covariance matrix from the discriminating variable fit with all parameters except

the numbers of events (yields) fixed
sPi(ye) sWeight of event e for species i

linear combination of the PDFs fi(y|~λi) with coefficient ai for the ith species:

f(y) =
Ns∑
i=1

ai fi(y|~λi) with
Ns∑
i=1

ai = 1 ∧ ai > 0 . (6.1)

For the discriminating variable fit, it is mandatory to use the Extended Maximum Likelihood
(EML) method, which will be presented in Section 6.2.4. According to Equation (6.27), the
likelihood function of the discriminating variable fit includes a Poisson term for the average
total number of events N , written as the sum of the average number of events for all Ns

species: N = ∑Ns
k=1 N k. The extended Negative Log Likelihood (NLL) for a data set with N

measurements then reads

L(~λ, ~N ) = −
N∑
e=1

log

Ns∑
i=1

N ifi(ye|~λi)

+
Ns∑
i=1

N i + logN ! . (6.2)

6.1.2 Definition and properties of the sWeights

An intuitive guess for the weights to separate the distributions of the species would be the
probability that event e belongs to species i:

wi(ye) = Nifi(ye|~λ)∑Ns
j=1Njfj(ye)

. (6.3)

But this is merely scaling the distributions as e.g. all events in a region, where the signal is
dominant, are assigned a high probability for being a signal event, including some background
events. Constructing the control variable distribution of e.g. the signal species will therefore
include a background contribution, which is not desired. Consequently, negative weights are
needed to allow for the statistical subtraction of events pertaining to other species. The sWeights
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sPi(ye) meet this requirement and are defined for species i as [PD05]

sPi(ye) =
∑Ns
j=1 V

yields
ij fj(ye)∑Ns

j=1Njfj(ye)
, (6.4)

where V yields
ij are the covariance matrix elements from the discriminating variable fit with all

parameters, except the numbers of events, fixed. The matrix may also be calculated analyti-
cally [PD05]:

V yields
ij = ∂2L(~λ)

∂Ni∂Nj
=

N∑
e=1

fi(ye)fj(ye)(∑Ns
j=1Njfj(ye)

)2 . (6.5)

In case the sWeights for the ith species are applied to all events in the data set, the control
variable distributions of this species are obtained. The resulting distributions for species i will
be properly normalized to the average number of events in this species, since the sum of all
sWeights yields this average number [PD05]:

N∑
e=1

sPi(ye) = Ni . (6.6)

Furthermore, each event is effectively only counted once, as the sum of its sWeights for all
species is one:

Ns∑
i=1

sPi(ye) = 1 . (6.7)

6.1.3 Crucial points in the application of the sPlot technique

The sPlot technique is only applicable to a data set if the discriminating variable and the control
variables are statistically independent. Thus, the PDFs describing the underlying population,
from which the data set was sampled, must factorize for the discriminating and control variables
in each species separately.

In case the parameters of the discriminating variable PDF are not known, the PDF must be fitted
twice to the discriminating variable distribution. The first time with all parameters allowed to
vary freely and the second time with all parameters except the numbers of events fixed to the
previously fitted values. Otherwise the covariance matrix results in wrong sWeights and thus
the distributions for the species of the control variable distributions are not recovered faithfully.

6.2 Unbinned maximum likelihood parameter estimation

First, in Section 6.2.1, the likelihood function is presented, including some of its properties and
its application in parameter estimation. Since the uncertainties of the parameters and their
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correlations are crucial for a measurement result, their calculation is explained in Section 6.2.3.
The sPlot technique requires the concept of Extended Maximum Likelihood (EML) parameter
estimation, which is presented in Section 6.2.4. It also introduces weights, which need to be
included in the likelihood function, as explained in Section 6.2.5. However, the inclusion of
weights into the likelihood function requires a correction of the resulting covariance matrix,
discussed in Section 6.2.6.

6.2.1 Estimation of parameters

The likelihood function is used to estimate the parameters of the PDF, that describes the under-
lying population of the measurements. Given N measurements x1, . . . , xN of a random variable
x and assuming x follows a PDF f(x|~λ) with parameters ~λ, the likelihood function is defined as

L(~λ) =
N∏
e=1

f(xe|~λ) . (6.8)

L(~λ) describes the probability, that the measurements xe were sampled from an underlying
population described by f(x|~λ). By maximizing the likelihood function the most probable values
for ~λ are found. For convenience usually the negative logarithm of the likelihood function,
referred to as NLL, is minimized. It is defined as

L(~λ) = − logL(~λ) = −
N∑
e=1

log f(xe|~λ) . (6.9)

The Maximum Likelihood Estimator (MLE) λ̂i for the ith parameter fulfills the condition

∂L(~λ)
∂λi

∣∣∣∣
λ̂i

= 0 . (6.10)

Estimators derived this way have desirable properties. They are consistent, i.e. they converge to
the true parameters ~p for large N , which is referred to as the asymptotic limit. In this limit MLEs

are also efficient as they reach the smallest possible variance, which is the Cramér-Rao (CR)
bound [Cra46; Rao92]:

V [λ̂i] =

(
1 + ∂b(λi)

∂λi

)2

E
[
∂

2L(~λ)
∂λ

2
i

] , (6.11)

where b(λi) denotes the bias of the estimator and E[x] the expectation value of x.

6.2.2 Correction of the bias for fitted parameters in the non-asymptotic case

MLEs are guaranteed to be unbiased only in the asymptotic case. In the non-asymptotic case
they can be biased. In some cases it is possible to calculate the expected bias and then to correct

37



6 Statistical methods and software toolkits

the fitted parameter. In general, the bias for an estimator of the parameter λ of a PDF f(x|λ),
defined for the interval x ∈ [a, b], is obtained by calculating its expectation value, which can be
written as a function h(λ):

E
[
λ̂
]

=
∫ b

a
λ̂ f(x|λ) dx = h(λ) . (6.12)

If h(λ) = λ, the estimator is unbiased. If not, the estimator corrected for the bias is obtained
by calculating h−1(λ̂), if the inverse function h−1(λ̂) of h(λ) exists. Two examples relevant for
this thesis are given below, concerning the decay rate λ of an exponential PDF and the standard
deviation of a Gaussian PDF.

Correction of the decay constant for an exponential PDF

An exponential PDF for a random variable x ∈ [a, b] with decay rate λ < 0 may be defined as

e(x) = λ

eλb − eλa
eλx . (6.13)

In case a = 0 and b = ∞ the MLE for λ is

λ̂ = N∑N
e=1 xe

, (6.14)

with xe denoting the N data values. The expectation value of λ̂ and the corresponding corrected
estimator λ̂corr are given by [Cow98, p. 73]

E
[
λ̂
]

= N

N − 1 λ ⇒ λ̂corr = N − 1
N

λ̂ . (6.15)

Correction of the standard deviation for a Gaussian PDF

A Gaussian PDF for a variable x ∈ [a, b] with mean µ and standard deviation σ is defined as

g(x) = 2
erf
(
b−µ√

2σ

)
− erf

(
a−µ√

2σ

) e− (x−µ)2

2σ
2

√
2πσ

. (6.16)

In case the distribution is not truncated, i.e. a = −∞ and b = +∞, the MLE for the variance
reads

σ̂2 =
∑N
e=1 (xe − µ̂)2

N
, (6.17)

with an expectation value of
E
[
σ̂2
]

= N − 1
N

σ2 . (6.18)
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The correction, known also as Bessel’s correction, is given by

σ̂2
Bes = N

N − 1 σ̂2 . (6.19)

If instead of an unbiased estimation of the variance an unbiased estimation of the standard
deviation is of interest, one can not simply take the square root of the corrected MLE of the
variance, since the square root is a non-linear function. Holtzman derived the estimator for the
unbiased standard deviation to be [Hol50]:

σ̂corr = cN

√
σ̂2

Bes , (6.20)

where cN is defined by

cN =
√
N − 1

2
Γ
(
N−1

2

)
Γ
(
N
2

) . (6.21)

The Γ function is the extension of the factorial to real numbers with Γ(n) = (n − 1)!. For n
larger than roughly 170 it is not possible to represent the values of Γ(n) with double precision
floating point numbers. Therefore, in this thesis an approximate formula provided by Brugger
[Bru69] based on results of Cureton [Cur68] is used. The approximate unbiased standard deviation
is given by

σ̂corr =
√

N

N − 1.5

√
σ̂2 =

√∑N
e=1 (xe − µ̂)2

N − 1.5 . (6.22)

Note on truncated PDFs

In case the conditions for a and b mentioned above are not met, the PDF is called truncated. The
MLEs for σ and λ of a truncated exponential or Gaussian PDF can not be determined analytically;
Equation (6.10) must be solved numerically. As a consequence neither the expectation value of
the estimator nor the correction for a possible bias can be calculated.

6.2.3 Determination of parameter uncertainties

There are several ways to calculate the uncertainties on a ML estimator λ̂i. One option is to use
the CR bound (Eq. 6.11), which is only possible for large numbers of events where ML estimators
reach the CR bound.

Another option is to exploit the Gaussian shape of the likelihood function in the asymptotic
limit [KSO87]. For large N the NLL function will have a parabolic shape and can, considering a
single parameter λ, be written as

L(λi) = Lmin +

(
λi − λ̂i

)2

2σ2
λ

, (6.23)

39



6 Statistical methods and software toolkits

where Lmin is the minimum of the NLL function. Consequently, the variance of λ̂i is calculated
as

V(λ̂i) =
(
∂2L(λi)
∂λ2

i

)−1

(6.24)

in the one-dimensional case and in the absence of any bias. In the multi-dimensional case the
covariance matrix V is given by

V =
[
∂2L(~λ)
∂λi∂λj

]−1

, (6.25)

where the square brackets denote the matrix, that is formed by the elements i and j. This
convention will be used throughout this thesis.

A third option to determine the uncertainties for the parameter λi is to find the values σa and
σb for which

L
(
λi

+σa
−σb

)
= Lmin + 1

2 . (6.26)

σb and σa represent the positive and negative uncertainty of the parameter λi. In the asymptotic
limit this can be easily verified using Equation (6.23). But for finite data sets this is still
valid [EDJ71; FST79].

6.2.4 Extended unbinned maximum likelihood estimation

The concept of EML estimation is first mentioned in literature in a note by Orea [Ore58]. It
allows the normalization of the PDFs to float and thus accounts for a fluctuating number of
events in a data set. This is common in High Energy Physics (HEP), as data is usually taken for
a fixed period of time and not until a predefined number of events has been collected. A floating
normalization is achieved by multiplying a Poisson term for the average number of events N ,
also called yield, to the likelihood function build from N measurements:

LE(λ) = e−N NN

N ! L(λ) . (6.27)

As proved by Barlow, parameters estimated from the likelihood function are equal to those
estimated from the extended likelihood function, as long as it is possible to vary the shape of
the PDFs independently from the normalization [Bar90]. But the uncertainties of the parameters
can be different. Those from the EML function are typically larger since the constraint on the
total yield is missing. Whether the ML or EML method is to be used, depends on the situation
studied. The former describes the yields in the particular experiment carried out and the latter
the yields in an experiment such as the one carried out, that is, if the particular experiment
would be repeated [LAP86]. An example for the former is the measurement of the ratio of kaons
and pions in cosmic rays and an example for the latter is the determination of the absolute
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kaon rate in cosmic rays [LAP86]. In Section 6.1 the EML method was used for the fit to the
discriminating variable distribution involved in the sPlot technique.

In case the shape parameters and the yields of the PDFs can not be varied independently even the
estimated parameter values from ML and EML method may differ and the parameters estimated
from the EML might be more accurate. An example for this is a signal distribution with unknown
shape and yield parameters on top of a background distribution with known shape and yield
parameters [Bar90].

6.2.5 Unbinned maximum likelihood estimation in the presence of per-event
weights

Event weights play an important role in HEP. They are e.g. used to adjust kinematic distributions
in Monte Carlo (MC) samples to the corresponding distributions in data to correct for known
deficiencies (Sec. 5.2.3) or for performing a statistical background subtraction with the sideband
subtraction technique (Sec. 5.2.2), or with the sPlot technique (Ch. 7). They are included by
defining the likelihood function as

L(~λ) =
N∏
i=1

f(xi|~λ)wi ⇒ L(~λ) = −
N∑
i=1

wi log f(xi|~λ) . (6.28)

Equation (6.25) for the parameter uncertainties is no longer valid. This is most easily seen by
considering a constant weight w 6= 1. Then the weight can be written in front of the inverse
covariance matrix, resulting in

V = 1
w

[
∂2L(~λ)
∂λi∂λj

]−1

. (6.29)

Consequently, the uncertainties will be underestimated for w > 1 and overestimated for w < 1.
Three methods to correct the uncertainties in the presence of per-event weights are presented
in Section 6.2.6.

6.2.6 Corrections of the covariance matrix in the presence of per-event weights

As shown in Equation (6.29) the uncertainties in the presence of per-event weights must be cor-
rected. Corrections proposed by Eadie et al. [EDJ71] and by Langenbruch [Lan19] are described
in this section. Langenbruch presents two expressions for the correction of the covariance ma-
trix. The first expression accounts for the presence of the sWeights and the second expression
additionally accounts for the uncertainties of the sWeights, arising from the discriminating vari-
able fit. The former is hereafter referred to as asymptotic correction part one and the latter as
asymptotic correction part two.
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Asymptotic correction part one

Langenbruch derives the covariance matrix V of the fitted parameters ~̂λ of the PDF f(x|~λ)
estimated with the maximum likelihood method in the presence of weights we for event e [Lan19]:

V =
[
N∑
e=1

we
∂2 log f(xe|~λ)

∂λi∂λk

∣∣∣∣∣
~̂λ

]−1

×
[
N∑
e=1

w2
e

(
∂ log f(xe|~λ)

∂λi

∣∣∣∣∣
~̂λ

∂ log f(xe|~λ)
∂λk

∣∣∣∣∣
~̂λ

)]

×
[
N∑
e=1

we
∂2 log f(xe|~λ)

∂λi∂λk

∣∣∣∣∣
~̂λ

]−1

.

(6.30)

This can be identified as V = Ṽ C Ṽ , where Ṽ is the uncorrected covariance matrix as in
Equation (6.29) and C is the correction matrix including the weights. As mentioned above, the
square brackets denote the matrix, that is formed by the elements with the indices found inside,
e.g. i and k in the first square brackets in Equation (6.30).

Asymptotic correction part two

The correction of the covariance matrix in Equation (6.30) does not account for the uncertainties
of the sWeights, which arise from nuisance parameters in the discriminating variable fit and their
potential correlation with the event yields. The nuisance parameters in the sWeight calculation
are the shape parameters of the discriminating variable fit model.

Considering the uncertainties of the sWeights leads to the following correction, which needs to
be added to Equation (6.30) [Lan19]:

V =
[
N∑
e=1

we
∂2 log f(xe|~λ)

∂λi∂λk

∣∣∣∣∣
~̂λ

]−1

×
[
N∑
e=1

∂we
∂pm

∣∣∣∣
~̂p

∂ log f(xe|~λ)
∂λk

∣∣∣∣∣
~̂λ

]
× Ṽ discr ×

[
N∑
e=1

∂we
∂pn

∣∣∣∣
~̂p

∂ log f(xe|~λ)
∂λl

∣∣∣∣∣
~̂λ

]

×
[
N∑
e=1

we
∂2 log f(xe|~λ)

∂λl∂λj

∣∣∣∣∣
~̂λ

]−1

,

(6.31)

where the full set of parameters involved in the discriminating variable fit is denoted by ~p, thus
including shape and event yield parameters. Their best estimate is denoted by ~̂p. The matrix
Ṽ discr is defined as

Ṽ discr = V discr −
[
V yields
ij

]
, (6.32)

where the yield matrix
[
V yields
ij

]
, defined in Equation (6.5), is filled with zeros to match the

dimensions of the full covariance matrix of the discriminating variable fit V discr. Both matrices
on the Right Hand Side (RHS) must of course have the same order of parameters in their rows
and columns.
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Squared weights correction

Eadie et al. [EDJ71] proposed a correction matrix

C =
[

N∑
e=1

w2
e
∂2 log f(xe|~λ)

∂λi∂λj

∣∣∣∣∣
~λ

]
(6.33)

to be applied to the uncorrected covariance matrix Ṽ in the form of V = Ṽ C Ṽ . This is a special
case of the asymptotic correction part one, since if [Lan19]

E
[

w2

f(x|~λ)
∂2f(x|~λ)
∂λi∂λj

∣∣∣∣∣
~λ

]
= 0 (6.34)

both corrections are the same. This can be found by calculating the second derivatives in the C
matrix of the squared weights correction under consideration of the chain rule and comparing
it to the corresponding terms in the C matrix of the asymptotic correction part one.

The squared weights correction will generally not result in correct parameter uncertainties unless
the assumption in Equation (6.34) holds.

6.3 Statistical tests with pull distributions

Pull distributions provide a tool to investigate the consistency of fitted parameter uncertainties
with the fluctuation of the fitted parameter values [DL02]. For pseudo experiment studies, where
a data set is repeatedly generated and fitted, the contribution to the pull distribution by the
ith fit is defined by

θi = λfit
i − λtrue

σfit
λi

, (6.35)

where λfit
i is the fitted parameter value and λtrue is the true value of the parameter used in the

generation of the pseudo experiments. Given a set of pseudo experiments, the pull distribution
is the distribution of the θi. For later reference the difference between the fitted parameter value
and its true value is defined by

di = λfit
i − λtrue . (6.36)

The distribution of the di for a set of pseudo experiments will be referred to as di -distribution.

To determine the expected pull distribution, the pull variable is modeled as z = x/y, where x, y
and z are random variables described by the PDFs p(x, y) and g(z). x represents di and y the
parameter uncertainty σfit

λi
. The expected pull distribution is described by the PDF g(z), which

is found by solving the integral

g(z) =
∫ ∞

0
y p(zy, y)dy . (6.37)
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The fitted parameter values and their uncertainties are assumed to be Gaussian distributed.
Thus, p(x, y) is modeled as a two-dimensional Gaussian distribution with means µx, µy, standard
deviations σx, σy and correlation coefficient ρ:

p(x, y) = 1

2πσxσy
√

1 − ρ2
exp

− 1
2
(
1 − ρ2

) ((x− µx)2

σ2
x

+
(y − µy)2

σ2
y

− 2ρ
(x− µx)(y − µy)

σxσy

)
(6.38)

A correlation between the parameter value and its uncertainty occurs e.g. for the MLE of the
standard deviation of a Gaussian distribution as well as for the MLE of the decay constant
of an exponential distribution. The uncertainties of these estimators are proportional to the
estimator itself. For example, the variance of the MLE for the decay constant of an exponential
PDF, presented in Equation (6.14), is given by

V
[
λ̂
]

= λ̂
2

N
. (6.39)

This can be calculated using the CR bound from Equation (6.11).

Solving the integral to determine g(z) yields

g(z) = e
−
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(6.40)
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provided that:

Re

σ2
x − 2ρσxσyz + σ2

yz
2(

−1 + ρ2
)
σ2
xσ

2
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 ≤ 0 ∧ Re
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(6.41)

∨ Re

σ2
x − 2ρσxσyz + σ2

yz
2(

−1 + ρ2
)
σ2
xσ

2
y

 < 0 . (6.42)

The conditions in Equations (6.41) and (6.42) ensure that the pull distribution g(z) is real valued
and has no singularity. Their validity has always been checked when using Equation (6.40) in
the studies presented in this thesis.

The pull distribution g(z) reduces to a standard Gaussian distribution

g(z) = 1
2π e− z

2
2 , if ρ = 0, µx = 0, µy = σx and σy � σx . (6.43)

These conditions represent an unbiased fitted parameter distribution (µx = 0) and correctly
estimated uncertainties (σx = µy). The mean value of the distribution of a correctly fitted
uncertainty is equal to the standard deviation of the fitted parameter distribution. In most
cases the standard deviation of the uncertainty distribution will be much smaller than the
standard deviation of the fitted parameter distribution (σy � σx). It might be presumed by
intuition, that the expected pull distribution has a standard Gaussian shape. As shown above
this is true if ρ = 0, but as will be shown below this is generally not true if ρ 6= 0.

An example for the function g(z), where x and y have a correlation of ρ = 0.65 but all other
parameters are chosen such that a standard Gaussian distribution is expected, is given in Fig-
ure 6.1. It shows a small bias of 0.009 for the theoretically expected mean value of the pull
distribution, denoted hereafter by µt:

µt = E [g(z)] . (6.44)

During the studies in Chapter 7 the typical values of the biases were smaller than 0.01. The
bias is considered to be relevant in a study with N pseudo experiments if the bias is of the
same size as the uncertainty of the mean value of the pull distribution, which is given by 1/

√
N.

Thereby, a standard deviation of one for the pull distribution is assumed. Thus, the effect of a
correlation between the parameter value and its uncertainty can be neglected if the number of
pseudo experiments is less than O(104). However, for a few pull distributions, with ρ > 0.97 and
σy/µy around 5 %, a bias of O (0.1) was observed. For these pull distributions the effect of the
correlation can only be neglected in case the number of pseudo experiments is less than O (100).
In summary, a pull distribution with consistent parameter values and uncertainties may not
have an expected mean value statistically compatible with zero.
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Figure 6.1: Example for the theoretical pull distribution g(z) according to Equation (6.40) with µx = 0, σx =
0.036, µy = 0.036, σy = 0.005 and correlation coefficient ρ = 0.65. From the values next to the curve
it can be seen, that the function is properly normalised and more importantly, that a small bias for
the mean value is found. The bias of the standard deviation is smaller than the bias of the mean by
an order of magnitude.

In Appendix A.1 a validation of Equation (6.40) can be found, as well as a study of the depen-
dence of the mean value and the standard deviation of g(z) on the correlation coefficient.

It needs to be stressed, that in Equation (6.38) an ideal two-dimensional Gaussian distribution
is assumed for x and y. For pull distributions of fitted parameters a bias can also arise for
other reasons than the correlation, i.e. if the skewness, the third central moment, of the x or y
distributions is not compatible with zero (see Section 7.3.1 for an example). If in doubt, whether
a bias arises from the correlation between x and y or from some other source, the di -distribution
needs to be studied. The bias of this distribution is independent of the correlation coefficient.

6.4 Software and Algorithms

In this section the software tools for data analysis and statistical modeling (Sec. 6.4.1) are
presented, as well as a technique to minimize rounding errors in computed sums (Sec. 6.4.2).

6.4.1 ROOT, RooFit and RooStats

ROOT [BR97] is an object oriented data analysis framework developed at the European Labora-
tory for Particle Physics (CERN). It is written in C++ and widely used in HEP. It provides tools
for large scale data analysis, such as visualization, histogramming, minimization and fitting.
The ROOT file format is used in HEP to store more than 1 EB of physics data [ROO20].
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RooFit [VK03] is a C++ software toolkit focused on statistical modeling. It is integrated into
ROOT since 2003. Being object oriented, variables and PDFs are implemented as objects. It
allows generation of pseudo experiments, fitting of binned and unbinned data sets and provides
tools to manage large analyzes. Especially, RooFit takes care of the normalization of the PDFs,
performing a numerical integration if an analytical integration is impossible. The version of
ROOT used in this thesis is 6.20.04 from April 1st 2020.

RooStats [Mon+10] is a software toolkit built on top of RooFit, providing advanced statis-
tical tools for e.g. the estimation of confidence intervals. In the context of this thesis only the
implementation of the sPlot technique by RooStats is used.

6.4.2 Compensated summation

Adding two finite precision floating point numbers, as e.g. specified by the IEEE standard 754
[Ins85], may lead to rounding errors if one number is larger than the other. To add the numbers,
they have to be expressed with the same exponent, consequently the smaller number is rounded.

If n numbers xi are summed up, the rounding errors can accumulate up to a maximum er-
ror [Hig93]

En ≤ (n− 1)ε
n∑
i

|xi| + O
(
ε2
)
, (6.45)

where En is the difference between the actually computed sum and the sum calculated with
infinite precision while ε denotes the machine precision, also called unit roundoff or machine
epsilon, as defined in Ref. [Gol92].

The Kahan summation [Kah65] is one method to reduce the numerical error due to rounding.
This is achieved by storing the rounding error for each addition in a carrier variable and feeding
it back into the next addition. For this algorithm the upper bound for En is given by [Hig93]

En ≤
(
2ε+ O

(
nε2
)) n∑

i

|xi| . (6.46)

Considering O (ε) the rounding error is independent of n. This is a significant improvement
compared to Equation (6.45). Care must be taken if ∑n

i |xi| >>
∑n
i xi. In these cases the

relative error En/Sn can be large, where Sn is |
∑n
i xi|.

Summation occurs in the context of this thesis e.g. for the calculation of mean values or of the
asymptotic correction part one (Eq. 6.31). To ensure that the results have a minimal numerical
error the Kahan summation is used whenever possible. It will be pointed out where it was used
in Chapter 7.
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7
Studies of the sPlot technique and of fits to weighted events

The studies conducted in the scope of this thesis are presented in this chapter. They aim to study
the sPlot technique and to find the correct approach to obtain the parameter uncertainties of fits
to events weighted with sWeights. They are based on pseudo experiments, which are presented
in Section 7.1. Some validations are discussed in Section 7.2 prior to presenting the main results
in Section 7.3. This is followed by discussions and further investigations of the results (Sec. 7.4).
This chapter closes with some conclusions in Section 7.5.

7.1 Description of the studies

First, the statistical model employed by the pseudo experiments is presented in Section 7.1.1,
defining the variables and the PDFs. This is followed by a description of the procedure used for
a single pseudo experiment, including the sWeight calculation and the various fits performed.
Finally, in Section 7.1.3, an explanation, how conclusions are drawn about the three correction
methods for the uncertainties in fits to weighted events, is given.

7.1.1 The statistical model

The model used for the studies in this chapter has two species§, signal and background, and
three random variables, called mass, vexex and vgg. The random variable mass, which is the
discriminating variable, follows an exponential PDF for background and a Gaussian PDF for
signal. The variable vexex follows an exponential PDF for signal as well as for background and
the variable vgg follows a Gaussian PDF for both signal and background. The exponential PDF

was defined in Equation (6.13) and the Gaussian PDF in Equation (6.16). The parameters of the
PDFs in the model are documented in Table 7.1 and typical distributions, found by generating
toy data according to the model, are given in Figure 7.1.

The variable mass may represent the mass distribution of a B0
s → µ+µ− signal on a continuous

background in a simplified manner. The variable vexex resembles a simplified model of the
§The terms species, control variable and discriminating variable have already been introduced in Section 5.2.2.
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Figure 7.1: Typical distributions for (a) the discriminating variable mass, (b) the control variable vexex and (c)

the control variable vgg in a single pseudo experiment. Sig denotes signal and Bkg background.

Table 7.1: PDFs of the model and their parameters. The variable name Mass is abbreviated as m and vexex as
vxx to obtain shorter indices.

Variable Signal PDF Background PDF Range / a.u.

mass Gaussian:
µ

sig
m = 60 a.u., σsig

m = 4 a.u.
exponential:
λ

bkg
m =−0.025 1

a.u.

[0, 150]

vexex exponential:
λ

sig
vxx =−0.0125 1

a.u.

exponential:
λ

bkg
vxx =−0.01 1

a.u.

[0, 350]

vgg Gaussian:
µ

sig
vgg = 120 a.u., σsig

vgg = 5 a.u.
Gaussian:
µ

bkg
vgg = 100 a.u., σbkg

vgg = 10 a.u.
[60, 140]

lifetime distribution of the B0
s . The variable vgg was designed to provide peaking signal and

background PDFs in contrast to the vexex variable, inspired by the distribution of one boosted
decision tree (BDT) input variable in the B0

(s) → µ+µ− analysis (Ch. 5), namely the χ2 distance
of the muon tracks to any Primary Vertex (PV) [ATL16a, Figure 3b].

7.1.2 Description of a single pseudo experiment

Using the model described above, pseudo experiments are carried out. For each pseudo experi-
ment this involves five major steps:

1. Generating a toy data set,

2. performing the fit to the discriminating variable mass with all parameters floating,

3. performing the fit to the discriminating variable mass with the yield parameters floating
and the shape parameters fixed to the values obtained in step 2.,

4. calculating the sWeights based on the discriminating variable fit and

5. performing fits to the control variable signal and background distributions obtained by
applying the signal and background sWeights, respectively.
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The fit to the discriminating variable with only yield parameters floating (step 3.) will be referred
to as yield fit.

The toy data set is generated with a varying number of events. The number of signal and
background events is Poisson distributed with a mean of 20 000 events for signal and 80 000
events for background. Details of the event generation and some subtleties are explained in
Appendix B.1.

The sWeights are calculated using the SPlot class in RooStats. Care is taken to keep all
non-yield parameters of the discriminating PDF constant, which is necessary to obtain correct
sWeights (Sec. 6.1.3).

In the last step, the signal and background PDFs of the two control variables are fitted to
the corresponding weighted distributions. Each of these fits is performed multiple times with
different options for the correction of the uncertainties: squared weights correction, asymptotic
correction part one and asymptotic correction part two (Sec. 6.2.6). For the first option the fit
as well as the correction is performed using RooFit. For the latter two, the fit is performed
in RooFit but the corrections are calculated by a custom implementation of Equation (6.30)
and Equation (6.31) due to some limitations of the implementation in RooFit, as detailed
in Appendix B.1.

For any fit performed, the standard deviations and the decay constants are corrected for the
bias according to Equations (6.15) and (6.22). Any occurrence of a not bias corrected estimator
will be marked explicitly. Not applying the bias correction would lead to an expected bias with
a significance of 3.35σ for σsig

m and σsig
vgg in fits to the true distributions. This is derived in

Appendix B.2 and shows that the correction for bias is needed.

7.1.3 Procedure to study many pseudo experiments

In order to study fits to events weighted with sWeights, 100 000 pseudo experiments are carried
out, referred to as a set of pseudo experiments. The fit results are investigated by means of
the parameters of the pull distributions (Sec. 6.3). The focus is on the mean values and the
standard deviations of the pull distributions. Higher order moments, e.g. the skewness, are not
considered.

To decide whether the estimation of a parameter is unbiased, by looking at the mean value of
the corresponding pull distribution, the theoretically expected mean µt (Eq. 6.44) of the pull
distribution needs to be known. As µt should only account for the influence of the correlation
between the fitted parameter and its uncertainty, it is calculated under the assumption, that the
fitted parameter distribution is unbiased, i.e. µx in Equation (6.40) is set to zero. The parameter
σx is taken as the standard deviation of the fitted parameter distribution and µy (σy) as the
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mean value (standard deviation) of the fitted parameter uncertainty distribution. Although the
di -distribution defined by Equation (6.36) offers a more robust method to determine the bias
of a fitted parameter distribution, pull distributions are preferred, since they allow to inspect
the bias and the correctness of the uncertainties at a glance.

Hereafter a pull distribution is called biased if the absolute value of the difference (|∆µpull
µt

|)
between the mean value of the fitted parameter pull distribution (µpull) to µt is larger than five
times the uncertainty of the fitted parameter pull distribution mean (σµpull

):

|∆µpull
µt

| = |µpull − µt| > 5σµpull
. (7.1)

For convenience the signed significance is defined by

Sµpull
µt

= ∆µpull
µt

σµpull

. (7.2)

Any value of |Sµpull
µt

| below 3 is considered to indicate an unbiased parameter estimation. For
values larger than 3, but below 5, no conclusion is drawn. In this case studies with a larger
number of pseudo experiments are suggested.

The standard deviation of the fitted parameter pull distribution σpull is expected to be one, if the
uncertainties are estimated correctly. In this case the standard deviation of the fitted parameter
distribution is equal to the mean value of the fitted parameter uncertainty distribution. As
stated in Section 6.3, a possible correlation of a parameter and its uncertainty will not introduce
a significant deviation from one. A fitted parameter uncertainty will be called incorrect if σpull

is not compatible with one, considering a 5σ confidence interval. That is

|Sσpull
1 | = |∆

σpull
1

σσpull

| = |
σpull − 1
σσpull

| < 5 , (7.3)

with σσpull
denoting the uncertainty of the parameter σpull. For values of Sσpull

1 below 5, but
larger than 3, no conclusion is drawn. Any value of Sσpull

1 below 3 is considered to indicate
correctly estimated uncertainties.

7.2 Validations of the analysis steps

The validations in this section are meant to provide a solid basis for the presentation of the
results of the uncertainty correction methods in the next section. First, the event generation
and the bias correction is validated, based on fits to the true distributions (Sec. 7.2.1). The
parameters of the discriminating variable fit are an input for the sWeights calculation. This fit
is validated in Section 7.2.2, followed by a validation of the sWeights calculated (Sec. 7.2.3).
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7.2.1 Validations of the event generation and the correctness of the bias
correction

The true distributions for each variable and each species are obtained by selecting the events
based on their true species recorded at generation time. The fits to the true distributions serve
two purposes. First, they should confirm the proper generation of events according to the model
described in Table 7.1. Second, they should proof, that the correction of the bias arising for
some MLEs in the non-asymptotic case is correct.

Problems with the event generation might be detected by distorted shapes of the fitted parameter
distributions, such as reported in Ref. [HHM20a]. No such shape distortions were found in any
distribution of a fitted parameter of the model. Two representative pull distributions without
shape distortions are shown in Figures 7.2a and 7.2b.

The bias corrections for the fitted parameters given by Equations (6.15) and (6.22) are applied
despite the fact, that the PDFs in the model are truncated. In general this might not be correct,
as explained in the note on truncated PDFs in Section 6.2.2. But in this model the truncations are
of little influence. For example only 3.17 × 10−3 % of the events generated with a non-truncated
version of the vgg signal PDF would lie outside the definition interval of the truncated PDF.
Ergo it is expected, that these bias corrections are applicable. This is confirmed by the pull
distribution mean values in Table 7.2, which are all compatible with the theoretically expected
mean. Additionally, two examples of unbiased pull distributions are given in Figure 7.2.

In conclusion, these observations confirm the proper function of the event generation and the
correctness of the bias corrections applied to the fitted decay constants and standard deviations.
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Figure 7.2: Pull distributions for fits to the true distributions, demonstrating that the corrections for bias from

(a) Equation (6.15) and (b) from Equation (6.22) yield unbiased parameter estimates. No oddities
in the shapes of the distributions are found, indicating proper event generation.
The mean value, the standard deviation and the skewness given in the text field are descriptive
statistics values. No fit was used to obtain them. Right after the mean value of the pull distribution
the value of S

µpull
µ

t
is provided in brackets. In the same fashion S

σpull
1 is provided. An example how

the correlation coefficient between the fitted parameter at its uncertainty is obtained, is found in
Appendix B.3. The theoretically expected mean value µt, defined by Equation (6.44), is given at
the bottom of the text field. It is needed to calculate S

µpull
µ

t
and describes the bias introduced by

correlation between the fitted parameter and its uncertainty. At the end of the axis title the type
of fit is given in brackets. In following figures on fits to weighted control variable distributions, the
uncertainty correction method applied will be provided as an acronym. All acronyms used are listed
in Appendix C.

Table 7.2: Overview of the mean values and the standard deviations of the pull distributions for all the pa-
rameters of the model, estimated from fits to the true distributions. For each parameter the pull
distribution is unbiased and has a standard deviation compatible with one, confirming proper event
generation according to the model. The signed significances S

µpull
µ

t
and S

σpull
1 (Eqs. (7.2) and (7.3))

are provided in brackets.

Parameter Pull mean Pull std. dev.

λ
bkg
m −0.0005 ± 0.0032 (−0.8σ) 0.9990 ± 0.0022 (–0.5σ)
µ

sig
m −0.0033 ± 0.0032 (−1.0σ) 0.9986 ± 0.0022 (–0.6σ)
σ

sig
m −0.0016 ± 0.0032 (+1.1σ) 1.0020 ± 0.0022 (+0.9σ)

λ
bkg
vxx +0.0054 ± 0.0032 (+1.1σ) 0.9992 ± 0.0022 (–0.4σ)
λ

sig
vxx +0.0066 ± 0.0032 (+0.6σ) 0.9976 ± 0.0022 (–1.1σ)

µ
bkg
vgg −0.0004 ± 0.0032 (−0.1σ) 0.9992 ± 0.0022 (–0.4σ)
σ

bkg
vgg +0.0005 ± 0.0032 (+1.0σ) 0.9971 ± 0.0022 (–1.3σ)
µ

sig
vgg −0.0056 ± 0.0032 (−1.8σ) 0.9983 ± 0.0022 (–0.8σ)
σ

sig
vgg −0.0080 ± 0.0032 (−0.9σ) 0.9974 ± 0.0022 (–1.2σ)
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Figure 7.3: Pull distributions for (a) the fitted λ

bkg
m and (b) the fitted σ

sig
m showing unbiased fit results and

correctly estimated parameter uncertainties. The meaning of the values in brackets and of µt is
explained in Figure 7.2.

7.2.2 Validation of the discriminating variable fit

The resulting parameters from the discriminating variable fit are an input for the sWeights
calculation. Ergo, it is crucial to ensure that all the shape parameters of the mass PDF are fitted
correctly. The pull distributions for these parameters, namely the fitted λbkg

m , µsig
m and σsig

m were
found to have a mean of zero within the uncertainties, proving that there is no bias introduced
by the fit. As an example the pull distributions of the fitted λbkg

m and σsig
m are given in Figure 7.3.

The asymptotic correction part two depends on the covariance matrix of the discriminating
variable fit. The diagonal elements of this matrix are the squared uncertainties of the parameters
estimated in the discriminating variable fit. Hence, correct pull distributions for these parameters
prove the correctness of the diagonal elements of the covariance matrix. The standard deviations
of all pull distributions were compatible with one, showing that the diagonal matrix elements
are determined correctly. Two examples are provided in Figure 7.3. The off-diagonal elements
have not been checked explicitly.

7.2.3 Validation of the calculated sWeights

Equation (6.6) is exploited to validate the sWeights calculated by RooStats. According to
this equation the sum of signal sWeights equals the signal yield determined in the yield fit
and the sum of background sWeights equals the background yield determined in the yield fit.
For signal and background the difference between the sum of sWeights and the yield from the
yield fit is compared. Statistically significant but negligible biases are found. The bias for the
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Figure 7.4: Distributions of the difference between the sum of sWeights, and the yield obtained from the yield fit
for 100 000 pseudo experiments. Shown (a) for background and (b) for signal. The difference should
be zero according to Equation (6.6). Comparing the observed mean values of the differences to the
corresponding total event yields, the conclusion is, that the bias is negligible and that the sWeights
were calculated properly. The sWeights are calculated by RooStats, and abbreviated as sw in the
axis titles. In each pseudo experiment the Kahan summation (Sec. 6.2) was used to calculate the
sum of sWeights, in order to reduce numerical instabilities.

sum of background sWeights is 0.0069 ± 0.0002 (Fig. 7.4a). Relating this to the total number
of background events, yields a relative bias of 8.6 × 10−5 ‰. For the sum of signal sWeights
(Fig. 7.4b) the relative bias is 2.5 × 10−4 ‰. The Kahan summation (Sec. 6.4.2) is used to
calculate the sum of the sWeights, excluding numerical instabilities as explanation for the biases
observed. Since the relative biases are small, this is not expected to have an influence on the
subsequent studies.

Nevertheless, results based on these sWeights, calculated by RooStats, have been cross-checked
with the results obtained by using a custom implementation of the sWeights calculation. These
custom calculated sWeights do not show a bias for the sum of signal or background sWeights.
The standard deviation of the distribution of the difference between the sum of sWeights and
the yield from the yield fit is of order 10−15 (Figs. B.2a and B.2b). This is much smaller than the
values observed for the sWeights calculated by RooStats, which are of order 10−2 (Figs. 7.4a
and 7.4b). Hence, the custom calculated sWeights fulfill Equation (6.6) more accurately and
are thus well suited to be used for cross validations of the sWeights calculated by RooStats.
Subsequently the sWeights calculated by RooStats are used unless noted otherwise.
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Table 7.3: Comparison of the three uncertainty correction methods used, based on pull distributions. In (a) the
mean values of the pull distributions for all control variable parameters are presented and in (b) the
standard deviations of the pull distributions. The signed significances S

µpull
µ

t
and S

σpull
1 (Eqs. (7.2)

and (7.3)) are provided in brackets.
(a)

Parameter squared weights asymptotic part one asymptotic part two

λ
bkg
vxx +0.0065 ± 0.0032 (+1.4σ) +0.0065 ± 0.0032 (+1.4σ) +0.0065 ± 0.0032 (+1.4σ)
λ

sig
vxx +0.0082 ± 0.0033 (+0.5σ) +0.0102 ± 0.0032 (+0.5σ) +0.0102 ± 0.0032 (+0.5σ)

µ
bkg
vgg +0.0025 ± 0.0033 (+0.8σ) +0.0027 ± 0.0032 (+0.8σ) +0.0026 ± 0.0031 (+0.8σ)
σ

bkg
vgg +0.0043 ± 0.0033 (+2.0σ) +0.0045 ± 0.0033 (+2.0σ) +0.0046 ± 0.0031 (+2.0σ)
µ

sig
vgg +0.1039 ± 0.0081 (+15.0σ) −0.0129 ± 0.0032 (−2.4σ) −0.0125 ± 0.0031 (−2.4σ)
σ

sig
vgg −0.0791 ± 0.0103 (−7.5σ) +0.0344 ± 0.0032 (−8.5σ) +0.0338 ± 0.0031 (−8.6σ)

(b)

Parameter squared weights asymptotic part one asymptotic part two

λ
bkg
vxx 0.9986 ± 0.0022 (−0.6σ) 0.9996 ± 0.0022 (−0.2σ) 0.9993 ± 0.0022 (−0.3σ)
λ

sig
vxx 1.0399 ± 0.0023 (+17.2σ) 1.0005 ± 0.0022 (+0.2σ) 0.9999 ± 0.0022 (−0.0σ)

µ
bkg
vgg 1.0411 ± 0.0023 (+17.7σ) 1.0225 ± 0.0023 (+9.8σ) 0.9915 ± 0.0022 (−3.8σ)
σ

bkg
vgg 1.0372 ± 0.0023 (+16.0σ) 1.0291 ± 0.0023 (+12.6σ) 0.9894 ± 0.0022 (−4.8σ)
µ

sig
vgg 2.5698 ± 0.0057 (+273.2σ) 1.0239 ± 0.0023 (+10.4σ) 0.9851 ± 0.0022 (−6.8σ)
σ

sig
vgg 3.2624 ± 0.0073 (+310.1σ) 1.0128 ± 0.0023 (+5.6σ) 0.9824 ± 0.0022 (−8.0σ)

7.3 Results of the corrections of the covariance matrix in presence
of weights

In the sections below results for the squared weights correction (Sec. 7.3.1), the asymptotic
correction part one (Sec. 7.3.2) and the asymptotic correction part two (Sec. 7.3.3) are shown.
These corrections are applied to the uncertainties of the parameters estimated in the control
variable fits in the presence of sWeights.

7.3.1 Study of the squared weights correction

In this section the RooFit implementation of the squared weights correction described by
Equation (6.33) is studied. It is expected to find incorrect uncertainties since this methods is
not in general asymptotically correct. The uncertainties of the fitted parameters are discussed
first and then the biases. An overview of the mean values and the standard deviations of the
pull distributions for all fitted parameters is given in Tables 7.3a and 7.3b.

In Figure 7.5a the pull distribution obtained for the fitted λbkg
vxx shows, that for this parameter

correct uncertainties were obtained. For the parameters λsig
vxx, µbkg

vgg and σbkg
vgg (Figs. B.3b to B.3d)

the uncertainties are roughly 4 % smaller than the correct value, which is the standard deviation
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of the fitted parameter distribution σpar. This was inferred by taking

1 − µuncert
σpar

, (7.4)

where µuncert is the mean value of the parameters uncertainty distribution. This will in most
cases be equal to 1 − 1/σpull, where σpull is the standard deviation of the corresponding pull
distribution. For the parameters of the vgg signal Gaussian distribution the deviations are
worse. The parameter uncertainties are underestimated by roughly a factor 3.3 for parameter
σsig

vgg (Fig. 7.5b) and a factor 2.6 for parameter µsig
vgg (Fig. 7.5c).

For both µsig
vgg and σsig

vgg a bias in the pull distribution is observed (Figs. 7.5b and 7.5c). Checking
the di -distribution of the fitted µsig

vgg, which has a mean value of (0.0008 ± 0.0003) a.u., shows
that the parameter estimate is unbiased (Fig. 7.5e). The observed bias in the pull distribution
arises from the shape of the parameter uncertainty distribution (Fig. 7.5d). This distribution
has a strong tail towards smaller values, leading to a skewness of −0.256 ± 0.008. In combina-
tion with the negative correlation coefficient of −0.8740 ± 0.0007 between the parameter value
and the parameter uncertainty this results in a tail towards higher values in the pull distribu-
tion (Fig. 7.5c). This is qualitatively in agreement with the large positive bias of 0.1039 ± 0.0081
observed for the mean value of the pull distribution. Next, the bias of the pull distribution of
the fitted σsig

vgg (Fig. 7.5b) is confirmed by looking at the di -distribution (Fig. 7.5f), which
has a mean value of (0.0074 ± 0.0009) a.u., confirming the bias observed in the pull distribu-
tion with a significance of roughly 8σ. The skewness of the uncertainty distribution for this
parameter is (0.055 ± 0.008) , thus much smaller than the skewness observed for µsig

vgg. The dis-
cussion of the bias looking at the di -distributions is valid for all correction methods, since the
di -distributions do only depend on the fitted parameters itself and not on the fitted parameter
uncertainties.
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Figure 7.5: Distributions obtained using the squared weights correction (SQW). (a) The only fitted parameter

with correct uncertainties and (b) the pull distribution for the fitted parameter with the largest
underestimation of the uncertainties. (c) Pull distribution with the largest bias, arising from (d)
the shape of the uncertainty distribution for this parameter and not from a real bias in the fitted
parameter distribution, which is established by (e) the corresponding di -distribution. (f) The di

-distribution of the fitted parameter σsig
vgg is biased. The meaning of the values in brackets and of µt

is explained in Figure 7.2.
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Figure 7.6: Pull distributions obtained using the asymptotic correction part one. (a) Correct uncertainties are

obtained for the λsig
vxx. (b) Compared to Figure 7.5b a significant improvement of the uncertainties

is found. The meaning of the values in brackets and of µt is explained in Figure 7.2.

7.3.2 Study of the asymptotic correction part one

In this section a custom implementation of the asymptotic correction part one (Eq. 6.30) is
used and not the RooFit implementation, as explained in Appendix B.1. Using the asymptotic
correction part one improves the corrected uncertainties significantly, compared to the squared
weights correction. An overview of the mean values and the standard deviations of the pull
distributions for all fitted parameters is given in Tables 7.3a and 7.3b.

Correct uncertainties are obtained for the decay constants of the vexex signal (Fig. 7.6a) and
background (Fig. B.4a) PDF. Using the squared weights correction, this was only the case for
the λbkg

vxx (Fig. 7.5a) but not for the λsig
vxx (Fig. B.3b). For the parameters of the vgg background

PDF the pull distributions have a standard deviation closer to one by a few σ (Table 7.3b). The
uncertainties are smaller than the true value by (2.20 ± 0.22) % and (2.83 ± 0.22) % for µbkg

vgg and
σbkg

vgg , which is calculated employing Formula 7.4.

A significant improvement of the estimated uncertainties is observed for the parameters of the
vgg signal distribution. Instead of being underestimated by roughly factor 3, the uncertainties
are now underestimated by (2.33 ± 0.22) % and (1.26 ± 0.22) % for µsig

vgg and σsig
vgg (Figs. B.4e

and 7.6b). The bias observed for the pull distribution of σsig
vgg was discussed in the previous

section.
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7.3.3 Study of the asymptotic correction part two

The asymptotic correction part two is not implemented in RooFit and consequently a cus-
tom implementation is used. The results obtained with this uncertainty correction method are
compared to the results obtained using the asymptotic correction part one, discussed above. Ap-
plying the asymptotic correction part two to the covariance matrices of the fits to the weighted
control variable distributions does not alter the correct uncertainties for the parameters of the
vexex signal and background PDFs obtained with the asymptotic correction part one but re-
duces the standard deviation of the pull distributions for the parameters of the vgg signal and
background PDFs (Table 7.3b).

The uncertainties of the fitted parameters of the vgg background PDF are improved significantly
compared to the asymptotic correction part one. Applying the latter the uncertainties for the
fitted µbkg

vgg and σbkg
vgg were underestimated by (2.20 ± 0.22) % and (2.83 ± 0.22) %. In contrast,

applying the asymptotic correction part two the uncertainties for µ and σ are overestimated by
(0.86 ± 0.22) % and (1.07 ± 0.22) % (Figs. 7.7a and 7.7b). The standard deviations of the pull
distributions for µbkg

vgg and σbkg
vgg differ from one by −3.8σ and −4.8σ. Therefore, a study with a

higher number of pseudo experiments is needed to decide whether the uncertainties are correct.

For the standard deviations of the pull distributions for the fitted parameters of the vgg signal
PDF a significant reduction is observed. This results in significantly overestimated uncertainties
instead of underestimated uncertainties, as observed for the asymptotic correction part one.
Instead of being underestimated by (2.33 ± 0.22) % and (1.26 ± 0.22) % the uncertainties for
µsig

vgg and σsig
vgg are overestimated by (1.51 ± 0.23) % and (1.79 ± 0.24) % respectively (Figs. 7.7c

and 7.7d), calculated according to Formula 7.4. For these parameters the standard deviations
of the pull distributions differ from one by −6.8σ and −8.0σ, respectively. Thus, the estimated
uncertainties are incorrect. The results obtained for the parameters of the vgg signal PDF are
the main subject of the subsequent studies.
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Figure 7.7: Pull distributions obtained using the asymptotic correction part two. (a) For the parameter µbkg

vgg

and (b) the parameter σbkg
vgg no conclusion about the correctness of the uncertainties can be drawn.

The pull distributions of (c) the fitted parameter µsig
vgg and (b) the fitted parameter σsig

vgg show, that
the uncertainties of these parameters are significantly overestimated. The meaning of the values in
brackets and of µt is explained in Figure 7.2.
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Figure 7.8: Distribution of the generated values of the vgg variable for a single pseudo experiment (a) weighted

with signal sWeights and (b) weighted with background sWeights. The pseudo experiment was
chosen randomly.

7.4 Discussion of the results

The uncertainties obtained for the fitted parameters λbkg
vxx and λsig

vxx using the asymptotic cor-
rection part one or asymptotic correction part two were correct and need no further discussion.
However, for the fitted parameters of the vgg background PDF, namely µbkg

vgg and σbkg
vgg , it is not

clear if their uncertainties obtained by the asymptotic correction part two are correct. To clarify
this situation additional studies with a higher number of pseudo experiments are needed. For
the fitted µsig

vgg the uncertainties are incorrect and for σsig
vgg the fit result is biased and the un-

certainties are incorrect. Thus, the following discussion mainly concerns the fit results obtained
for the parameters µsig

vgg and σsig
vgg.

To guide the discussion, the following hypothesis is proposed here:

Hypothesis 1 (H1): The bias and the incorrect uncertainties observed for σsig
vgg and the incor-

rect uncertainties for µsig
vgg are caused by contributions from background events in regions, where

the vgg signal PDF reaches values close to zero.

This hypothesis is motivated by Figure 7.8a. In this figure a histogram with the distribution
of the vgg variable values, weighted with signal sWeights for a randomly-chosen single pseudo
experiment is presented. On the left side of the signal peak, below roughly 102.5 a.u., fluctuations
introduced by the background events are observed. For comparison, the distribution of the vgg
variable values weighted with the background sWeights is given in Figure 7.8b. It is important
not to draw premature conclusions from the binned distributions shown in Figures 7.8a and 7.8b
about the ML fits, since they are unbinned.
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7.4.1 Causes of the problems observed that can be excluded

The incorrect uncertainties observed for the fitted µsig
vgg and σsig

vgg, as well as the bias observed
for σsig

vgg do not arise from the event generation. This was shown in Section 7.2.1. There it
was also shown, that the bias correction according to Equation (6.22) is applicable. Since this
bias correction is applied for the fitted σsig

vgg, the observed bias can not arise from a biased
estimator in the non-asymptotic case. Furthermore, the significance of the expected bias in the
non-asymptotic case without applying the bias correction is −3.35σ. This is much smaller than
the observed bias with a significance of −8σ.

It has been argued in Section 7.2.3, that the biases observed in Figures 7.4a and 7.4b for the
difference between the number of events obtained from the yield fit and the sum of sWeights have
no influence on the results of the control variable fits. To ascertain this, the control variable fits
to weighted events were repeated using the sWeights calculated with a custom implementation of
the sWeights calculation as weights. The results obtained for the mean values and the standard
deviations of the pull distributions are close to the results obtained using the sWeights calculated
by RooStats. The differences observed are much smaller than 1σ. An elaborate discussion of
this topic is found in Appendix B.4.

On account of some sWeights being negative, it could be suspected, that the minimization of
the NLL may have been unsuccessful: e.g. by running into local minima. To clarify this situation
the parameters of the vgg signal and bkg PDFs were estimated calculating the minimum of the
NLL, defined by Equation (6.10), directly. Based on this equation the estimator of the parameter
µ of a non-truncated Gaussian PDF is defined by the mean value of the measurements or by
the weighted mean (Eq. B.12) in case weights are present. For the parameter σ of a non-
truncated Gaussian PDF the not-bias-corrected estimator is the weighted standard deviation
(Eq. B.13). Given a truncated Gaussian PDF, estimating the values of µ and σ is more involved.
An equation system for µ̂ and σ̂ must be solved. This was done numerically for all 100 000 pseudo
experiments (Appendix B.7). The distribution of the differences between the fitted parameter
values of σbkg

vgg and σsig
vgg and the estimated parameter values obtained by direct calculation are

given in Figures 7.9a and 7.9b. It is not expected that these differences are always zero, since
the minimization performed by Minuit is stopped once the convergence criterion is satisfied.
This happens if the Estimated Distance to Minimum (EDM), which is Minuit’s estimate of
the vertical distance to the minimum of the NLL, is below some defined threshold. The bias
of both distributions presented in Figures 7.9a and 7.9b is statistically significant and of order
1 × 10−5 a.u. or smaller. In comparison, the bias observed for the fitted σsig

vgg compared to the true
value of this parameter is (−0.0074 ± 0.0009) a.u. (Fig. 7.5f) and thus two orders of magnitude
larger. Consequently, the bias observed for the fitted σsig

vgg compared to its true value does not
arise from problems in the minimization process. The biases observed for the distribution of the
differences between the estimated parameter values obtained by direct calculation and those
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Figure 7.9: Distributions of the differences between fitted parameter values and the directly estimated param-

eter values obtained by solving the equation system for the estimators of a truncated Gaussian
distribution (Eq. B.7) for (a) the fitted parameter σbkg

vgg and (b) the fitted parameter σsig
vgg. A negli-

gible bias compared to the bias observed for the difference between the fitted value of σsig
vgg and the

true parameter value (Fig. 7.5f) is found.

obtained from the control variable fit for µbkg
vgg and µsig

vgg are even smaller than those observed
for σbkg

vgg and σsig
vgg (Figs. B.7a and B.7b).

7.4.2 Studies with restricted fit ranges applied

If Hypothesis 1 is true, excluding the regions in the vgg signal fit, in which the values of the vgg
signal PDF are close to zero and where the vgg background PDF is dominant, is expected to im-
prove the uncertainties and to reduce the bias of the fitted parameter σsig

vgg. Thus, three different
restricted fit ranges were chosen for the vgg signal PDF: [100 a.u., 140 a.u.], [105 a.u., 140 a.u.]
and [110 a.u., 140 a.u.]. This corresponds to cuts at 2, 3 and 4σsig

vgg on the left-hand side of the
signal peak.

Using any of the three restricted fit ranges for the vgg signal PDF leads to an unbiased pull distri-
bution for the fitted σsig

vgg, which is found in any of the Tables 7.4a to 7.4c. However, a bias with
a signed significance of −3.3 a.u. is found for the fitted µsig

vgg when using the [110 a.u., 140 a.u.]
range. To clarify whether this is a statistical fluctuation or a real bias a higher number of pseudo
experiments would be needed.

Using the squared weights correction to correct the uncertainties of the fitted µsig
vgg and σsig

vgg in
combination with any of the three restricted fit ranges for the vgg signal PDF still results in
incorrect uncertainties (Table 7.4a).
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Applying the asymptotic correction part one or the asymptotic correction part two to cor-
rect the uncertainties of the fitted µsig

vgg and σsig
vgg, correct uncertainties are obtained for the

[105 a.u., 140 a.u.] fit range and the [110 a.u., 140 a.u.] fit range (Tables 7.4b and 7.4c). For the
[100 a.u., 140 a.u.] no decision is made on the correctness of the uncertainties as the |Sσpull

1 | is
roughly three. This deviation is observed for both the asymptotic correction part one and the
asymptotic correction part two (Tables 7.4b and 7.4c).

To investigate, whether excluding the signal region when fitting the vgg background PDF to
the correspondingly weighted data has an influence on the fit results obtained for µbkg

vgg and
σbkg

vgg , two different fit ranges for the vgg background PDF are chosen: [60 a.u., 120 a.u.] and
[60 a.u., 130 a.u.]. This corresponds to cuts at 2 and 3σbkg

vgg on the right side of the vgg background
distribution.

Correct uncertainties are retrieved for the fitted parameters µbkg
vgg and σbkg

vgg by applying the
[60 a.u., 120 a.u.] fit range in combination with the asymptotic correction part one (Table 7.4b).
However, using the asymptotic correction part one in combination with the [60 a.u., 130 a.u.] fit
range incorrect uncertainties are found (Table 7.4b). Next, no decision is made on the correctness
of the uncertainties obtained when applying the asymptotic correction part two to correct the
uncertainties of the fitted parameters and any of the vgg background PDF fit ranges (Table 7.4c)

In summary, using the [105 a.u., 140 a.u.] or the [110 a.u., 140 a.u.] fit range yields unbiased pa-
rameter estimates with correct uncertainties for the parameters µsig

vgg and σsig
vgg, when applying

either the asymptotic correction part one or the asymptotic correction part two to correct
the uncertainties. Furthermore, correct uncertainties are obtained for µbkg

vgg and σbkg
vgg using the

[60 a.u., 130 a.u.] fit range in combination with the asymptotic correction part one. These find-
ings support Hypothesis 1.
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7 Studies of the sPlot technique and of fits to weighted events

Table 7.4: Mean values and standard deviations of the pull distributions for the fitted parameters of the PDFs of
the vgg variable when using restricted fit ranges in the fits to the distributions weighted by the sPlot
technique. The uncertainties of the fitted parameters were corrected by the three different methods:
(a) squared weights correction, (b) asymptotic correction part one and (c) asymptotic correction part
two. The signed significances S

µpull
µ

t
and S

σpull
1 (Eqs. (7.2) and (7.3)) are provided in brackets.

(a) Squared weights correction

Fit range / a.u. Parameter Pull mean Pull std. dev.

[100, 140] µ
sig
vgg +0.0019 ± 0.0045 (−1.9σ) 1.4153 ± 0.0032 (+131.2σ)

[100, 140] σ
sig
vgg −0.0131 ± 0.0048 (−2.4σ) 1.5309 ± 0.0034 (+155.1σ)

[105, 140] µ
sig
vgg −0.0054 ± 0.0037 (−2.5σ) 1.1589 ± 0.0026 (+61.3σ)

[105, 140] σ
sig
vgg −0.0089 ± 0.0035 (−0.8σ) 1.1126 ± 0.0025 (+45.3σ)

[110, 140] µ
sig
vgg −0.0051 ± 0.0032 (−3.3σ) 1.0243 ± 0.0023 (+10.6σ)

[110, 140] σ
sig
vgg −0.0105 ± 0.0031 (−0.0σ) 0.9711 ± 0.0022 (−13.3σ)

[60, 120] µ
bkg
vgg −0.0016 ± 0.0032 (+0.1σ) 1.0105 ± 0.0023 (+4.6σ)

[60, 120] σ
bkg
vgg −0.0030 ± 0.0032 (+0.7σ) 0.9963 ± 0.0022 (−1.7σ)

[60, 130] µ
bkg
vgg +0.0021 ± 0.0033 (+0.7σ) 1.0421 ± 0.0023 (+18.1σ)

[60, 130] σ
bkg
vgg +0.0033 ± 0.0033 (+2.0σ) 1.0360 ± 0.0023 (+15.6σ)

(b) Asymptotic correction part one

Fit range / a.u. Parameter Pull mean Pull std. dev.

[100, 140] µ
sig
vgg −0.0068 ± 0.0032 (−2.0σ) 1.0064 ± 0.0023 (+2.8σ)

[100, 140] σ
sig
vgg +0.0045 ± 0.0032 (−2.4σ) 1.0070 ± 0.0023 (+3.1σ)

[105, 140] µ
sig
vgg −0.0070 ± 0.0032 (−2.5σ) 1.0038 ± 0.0022 (+1.7σ)

[105, 140] σ
sig
vgg −0.0037 ± 0.0032 (−0.8σ) 1.0036 ± 0.0022 (+1.6σ)

[110, 140] µ
sig
vgg −0.0059 ± 0.0032 (−3.3σ) 1.0020 ± 0.0022 (+0.9σ)

[110, 140] σ
sig
vgg −0.0101 ± 0.0032 (−0.0σ) 1.0007 ± 0.0022 (+0.3σ)

[60, 120] µ
bkg
vgg −0.0015 ± 0.0032 (+0.2σ) 1.0034 ± 0.0022 (+1.5σ)

[60, 120] σ
bkg
vgg −0.0029 ± 0.0032 (+0.7σ) 1.0012 ± 0.0022 (+0.5σ)

[60, 130] µ
bkg
vgg +0.0022 ± 0.0032 (+0.7σ) 1.0233 ± 0.0023 (+10.2σ)

[60, 130] σ
bkg
vgg +0.0035 ± 0.0033 (+2.0σ) 1.0297 ± 0.0023 (+12.9σ)

(c) Asymptotic correction part two

Fit range / a.u. Parameter Pull mean Pull std. dev.

[100, 140] µ
sig
vgg −0.0068 ± 0.0031 (−2.0σ) 0.9935 ± 0.0022 (−2.9σ)

[100, 140] σ
sig
vgg +0.0046 ± 0.0031 (−2.4σ) 0.9919 ± 0.0022 (−3.6σ)

[105, 140] µ
sig
vgg −0.0070 ± 0.0032 (−2.5σ) 0.9994 ± 0.0022 (−0.3σ)

[105, 140] σ
sig
vgg −0.0036 ± 0.0032 (−0.8σ) 0.9986 ± 0.0022 (−0.6σ)

[110, 140] µ
sig
vgg −0.0059 ± 0.0032 (−3.3σ) 1.0012 ± 0.0022 (+0.5σ)

[110, 140] σ
sig
vgg −0.0100 ± 0.0032 (−0.0σ) 1.0002 ± 0.0022 (+0.1σ)

[60, 120] µ
bkg
vgg −0.0015 ± 0.0031 (+0.2σ) 0.9935 ± 0.0022 (−2.9σ)

[60, 120] σ
bkg
vgg −0.0028 ± 0.0031 (+0.7σ) 0.9931 ± 0.0022 (−3.1σ)

[60, 130] µ
bkg
vgg +0.0021 ± 0.0031 (+0.7σ) 0.9919 ± 0.0022 (−3.7σ)

[60, 130] σ
bkg
vgg +0.0036 ± 0.0031 (+2.0σ) 0.9901 ± 0.0022 (−4.5σ)
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7 Studies of the sPlot technique and of fits to weighted events

7.4.3 Studies with a modified statistical model

If Hypothesis 1 is true, it should be possible to tune the statistical model defined by Table 7.1
in such a way, that incorrect uncertainties and a potential bias are observed for other param-
eters than µsig

vgg and σsig
vgg. The modification chosen here is setting λsig

vxx = −0.1 1
a.u. instead of

−0.0125 1
a.u. . This causes the vexex signal PDF to fall quickly and thus a region is artificially cre-

ated, where the signal PDF has values close to zero and the background PDF is dominant, similar
to the case of the vgg signal PDF. Therefore, it is expected to observe incorrect uncertainties for
the fitted λsig

vxx parameter and a potential bias.

Alternatively, it should be possible to obtain unbiased pull distributions for σsig
vgg and improved

uncertainties for µsig
vgg and σsig

vgg by reducing the range in which the values of the vgg signal
PDF are close to zero. This is achieved by choosing a wider σsig

vgg of 10 a.u. To keep the relative
truncation of the vgg signal PDF the same, the right endpoint of the definition interval was
increased from 140 to 160 a.u. Thus the vgg signal PDF is truncated at four times the value of
σsig

vgg above the mean value µsig
vgg.

Another set of 100 000 pseudo experiments was generated with these settings. The following
discussion of the results obtained based on this set of pseudo experiments primarily focuses on
the asymptotic correction part two, since this should be the most accurate correction method
for the uncertainties. Additional material for this discussion is presented in Appendix B.6.

The pull distribution for the fitted λsig
vxx using the asymptotic correction part two based on the set

of pseudo experiments with modified parameters is presented in Figure 7.10a. The uncertainties
of the fitted λsig

vxx are underestimated with a signed significance of −5.2σ (Fig. 7.10a). The
bias of the pull distribution has a signed significance of −14.4σ, which is sustained by the
corresponding di -distribution (Fig. B.6a).

In comparison to Figure 7.5b it is apparent from Figure 7.10b, that the bias of the fitted σsig
vgg

disappears in case a larger parameter value for σsig
vgg is chosen in the statistical model. The

absence of this bias is confirmed by the corresponding di -distribution (Fig. B.6b). The stan-
dard deviations of the pull distribution for the fitted µsig

vgg and the fitted σsig
vgg parameter values

(Table B.3) do not allow a conclusion on the correctness of the uncertainties. But compared
to the incorrect uncertainties found for the default parameter values of the statistical model
(Table 7.3b) an improvement is clearly observed.

These additional observations also support Hypothesis 1.
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Figure 7.10: Pull distributions for 100 000 pseudo experiments based on the modified statistical model (Ta-

ble B.2). (a) Pull distribution for the modified parameter λsig
vxx with a significant bias and incorrect

uncertainties. (b) Pull distribution for the modified parameter σsig
vgg with an unbiased mean value.

It is not clear, whether the uncertainties are correct. These figures may be compared to the nom-
inal setup (Figs. B.5b and B.5f). The meaning of the values in brackets and of µt is explained in
Figure 7.2.

7.5 Conclusions

The aim of the studies presented in this thesis was to see, whether the sPlot technique can be
used in the ATLAS B0

(s) → µ+µ− analysis. The sideband subtraction technique, used up to now
in this analysis (Sec. 5.2.2), requires the specification of a signal region. The sPlot technique
does not, which is an advantage. Since no issues with the calculated sWeights have been found,
it is suggested to use it in the B0

(s) → µ+µ− analysis for data-MC sample comparisons, after
performing a direct comparison of the sideband subtraction technique and the sPlot technique
for relevant distributions in a future study.

In order to achieve the results presented here, unbinned ML fits to distributions of events
weighted by the sPlot technique and the correction of the covariance matrix resulting from
these fits had to be investigated. As expected, applying the squared weights correction does
not yield correct uncertainties. Correct uncertainties are obtained for the decay constants of
the exponential distributions using the asymptotic correction part one or the asymptotic cor-
rection part two. This is a proof of principle that either the asymptotic correction part one or
the asymptotic correction part two could be used in a measurement of e.g. the B0

s lifetime, in
case an unbinned ML fit is employed. Prior to their application a study with an adequate num-
ber events per pseudo experiment and a realistic model of the lifetime distribution in question
should be performed. If the asymptotic correction part one and the asymptotic correction part
two provide correct uncertainties in this case too, the asymptotic correction part one should be
chosen as it is less CPU intensive and less complicated to implement.
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7 Studies of the sPlot technique and of fits to weighted events

For the fitted parameters of the vgg signal PDF and the fitted parameters of the vgg background
PDF correct uncertainties were not obtained by using the asymptotic correction part one or the
asymptotic correction part two and the full vgg range as fit range. For the distribution of the
fitted σsig

vgg even a bias was observed. All studies presented in Section 7.4 supported Hypothesis 1
and none of them falsified this hypothesis. Therefore, this hypothesis can be generalized:

Hypothesis 2 (H2): If for a species the PDF of a control variable v reaches values significantly
greater than zero only in a small range compared to the full range of that variable, then the events
from the other species outside this small range might introduce a bias to the fitted parameter
distribution. The corrected uncertainties obtained with the asymptotic correction part one or the
asymptotic correction part two might not be correct. This effect is the more pronounced, the
smaller the yield of the control variable v is compared to the yields of the other species.

When performing an unbinned ML fit with unrestricted fit range to events weighted by the sPlot
technique, where the PDF fulfills the criteria mentioned in Hypothesis 2, it should be investigated
whether a bias or incorrect uncertainties appear.
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8
Summary and outlook

In this thesis, the sPlot technique and unbinned maximum likelihood fits to events weighted by
this method have been studied (Ch. 7). The presence of the sWeights in the fits necessitates a
correction of the covariance matrix as discussed in Section 6.2.6. Besides the correction proposed
by Eadie et al. [EDJ71], referred to as squared weights correction, the corrections proposed by
Langenbruch [Lan19], referred to as asymptotic correction part one and asymptotic correction
part two, have been examined. In contrast to the asymptotic correction part one, the asymptotic
correction part two does not only account for the presence of the sWeights but also for their
uncertainties, which arise from the discriminating variable fit.

A simple statistical model composed of three variables is employed for the pseudo experiments.
The discriminating variable PDF, consisting of an exponential background PDF and a Gaus-
sian signal PDF, is inspired by a typical invariant mass distribution of decaying B-mesons. One
control variable, named vexex, is made up of two exponential distributions for signal and back-
ground, the other one, named vgg, of two Gaussian distributions. The variable vexex resembles
a simplified model of the lifetime distribution of the B0

s . The variable vgg is designed to provide
peaking signal and background PDFs in contrast to the more continuous vexex variable.

Aiming for statistically significant results, 100 000 pseudo experiments have been performed.
For each pseudo experiment the numbers of events were drawn from Poisson distributions with
a mean of 20 000 events for signal and 80 000 events for background. The main steps in a
single pseudo experiment are: generating a data set, performing the discriminating variable
fit, performing the yield fit, calculating the sWeights and performing fits to the signal and
background distributions, obtained by applying the corresponding sWeights. All fits in this
procedure were carried out using RooFit, which internally calls the function minimization tool
Minuit [JR75].

Various validations of the analysis steps have been performed (Sec. 7.2). By fits to the true
distributions, the correctness of the event generation has been shown. To check the sWeight
calculation, the difference between the sum of sWeights and the fitted number of events from
the yield fit has been inspected and shown to have a negligible bias.

70



8 Summary and outlook

Most conclusions are drawn from pull plots of the fitted parameters and their uncertainties.
An account of the effects of a correlation between the fitted parameter and its uncertainty
on the pull distribution was given in Section 6.3. These effects are taken into account in the
interpretation of the pull distributions.

The squared weights correction is shown to be insufficient. Only for the decay constant of the
vexex background PDF, correct uncertainties are obtained. The uncertainties of all other control
variable PDF parameters are underestimated.

In comparison to the squared weights correction, applying the asymptotic correction part one
improves the parameter uncertainties significantly. Nevertheless, the uncertainties of the param-
eters of the Gaussian PDFs are still underestimated. Applying the asymptotic correction part two
results in correct uncertainties for the parameters of the vgg background PDF. The uncertain-
ties of the parameters of the vgg signal PDF are still problematic. However, by using restricted
instead of unrestricted fit ranges, correct parameter uncertainties are achieved. Furthermore,
the bias of the fitted standard deviation of the vgg signal PDF, observed for the unrestricted fit
range, vanishes. Supported by further studies, this leads to the conclusion, that the incorrect
uncertainties of especially the parameters of the signal PDF were caused by contributions from
background events in the regions where the signal PDF reaches values close to zero. In general
it is suspected, that, if the PDF of a species reaches values significantly greater than zero only
in a small region, the events of the other species outside this region might introduce incorrect
uncertainties or a bias, in case an unrestricted fit range is used.

In summary, the studies in this thesis present a step towards the application of the sPlot
technique in the ATLAS B0

(s) → µ+µ−analysis. Furthermore, the lifetime of the B0
s -meson could

be measured in a future analysis utilizing the sPlot technique to extract the signal lifetime, as
done by CMS and LHCb [CMS20; LHC17]. In case unbinned maximum likelihood fits are employed,
the asymptotic correction part two should be applied.
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A
Appendix to Chapter 6

A.1 Studies of the theoretical pull distribution

A pull distribution, as defined in Section 6.3, can be described by the ratio z = x/y of two random
variables x and y following a two-dimensional Gaussian PDF. The resulting PDF g(z) is given
by Equation (6.40). For some examples Equation (6.40) is validated against a dedicated pseudo
experiment, such as the one presented in Figure A.2. Besides this validation, the influence of
the correlation coefficient ρ on the mean value of g(z), denoted as µt, and on the standard
deviation of g(z), denoted as σt, is investigated. The parameter values for µx, σx, µy and σy

are taken from the results of the fit to the vgg signal truth distribution. The mean value and
the standard deviation of the distribution of the fitted vgg signal σ are taken as µx and σx.
The values for µy and σy are taken from the mean value and the standard deviation of the
distribution of the uncertainty of the fitted vgg signal σ. The pull distribution for vgg singal σ
is given in Figure 7.2b. The correlation coefficient was varied from −0.999 99 to 0.999 99 in ten
steps.
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Figure A.1: Mean value (a) and standard deviation (b) of a pull distribution with µx = 0, σx = 0.02512,

µy = 0.02506 and σy = 0.0001571, comparing the values obtained from Equation (6.40) (blue
dots) to values obtained by a pseudo experiment (orange diamonds), such as the one presented in
Figure A.2. Each of these pseudo experiments contained 2 × 106 events.
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For this specific example, a good agreement between the mean values calculated from Equa-
tion (6.40) and from pseudo experiments is observed (Fig. A.1a). The same holds for the standard
deviation of g(z) (Fig. A.1b). These figures show also a stronger effect of ρ on µt than on σt.
The difference between the minimum and the maximum of µt across the entire ρ range is 10−2.
For σt it is 9 × 10−5, thus providing an example, where the influence of ρ on σt can be neglected.
For this example a roughly linear dependence of µt on ρ is observed.
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Figure A.2: Example of a pseudo experiment to obtain the pull distribution g(z) on a statistical basis. 2 × 106

values for x as well as for y were generated. The upper left plot shows the distribution of the
nominator x, the upper right plot the distribution of the denominator y. The lower left plot shows the
two two-dimensional Gaussian distribution of x and y, demonstrating the correlation coefficient. The
lower right plot shows the resulting pull distribution. The true parameters are µx = 0, σx = 0.02512,
µy = 0.02506, σy = 0.0001571 and ρ = 0.55.
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B.1 Details of a single pseudo experiment and limitations of RooFit

A rough description of a single pseudo experiment has been given in Section 7.1.2. Below some
of the steps are presented in more detail.

Generating a toy data set in RooFit can require a reconfiguration of the internal number
generator. Usually, toy data is generated in RooFit by calling RooAbsPdf::generate() on the
PDF set up by the user. Generating a toy data set with a Poisson distributed number of events
is achieved by passing the flag Extended to this method. Doing so for the model described in
Section 7.1.1 set up in RooFit, while using the default number generator settings, leads to
generated toy data sets where the phase space spanned by the three variables mass, vexex and
vgg is not fully covered [HHM20b]. To avoid this issue the numbers of events are generated by the
TRandom3 class of ROOT. The toy data sets for signal and background are then produced by
providing the numbers of events to generate to the RooAbsPdf::generate() call. After labeling
the events according to their true origin as signal or background the two data sets are merged
and shuffled.

All fits are performed with RooFit using the RooAbsPdf::fitTo() method. By default this
method uses of the function minimization tool Minuit [JR75]. The function minimizer was not
changed for the studies presented here. The version of ROOT used in this thesis is 6.20.04
from April 1st 2020 the DOI in [BR97] is specific for this version. The squared weights correction
and the asymptotic correction part one are implemented in the RooAbsPdf::fitTo() method.
They are enabled by the flags SumW2Error and AsymptoticError, respectively. The asymptotic
correction part one was introduced into ROOT in release 6.20 dated April 2020. Using this
method revealed, that it can not be used in conjunction with the Extended flag and that the
usage of the AsymptoticError flag requires setting limits on the parameters. These observations
were reported to the ROOT-Forum [HHM20b; HM20; HHM20c]. Since parameter limits in Minuit
may lead to incorrectly estimated parameter uncertainties [JR75], it is preferred to avoid these.
Therefore, the asymptotic correction part one was implemented in the code used by the stud-
ies presented in this thesis. Numerical instabilities are avoided by using analytical derivatives
only. Furthermore, the asymptotic correction part two was implemented, which is not avail-
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able in ROOT as of release 6.22. The derivatives required for the asymptotic correction part
two were calculated by the computer algebra software SageMath [The20], using especially the
component SymPy [Meu+17]. The latter was also used to generate the corresponding C++ code
automatically. The corrections implemented use the fit result obtained by RooAbsPdf::fitTo().

B.2 Calculation of the expected bias of a distribution of an
uncorrected standard deviation

In Equation (6.16) the correction for the bias of the standard deviation σ of a Gaussian PDF

has been given. To know whether this correction is needed, when looking at many pseudo
experiments, the expected bias of the fitted parameter distribution in case of no correction is
estimated below.

Given a MLE σ̂ for a parameter σtrue of a Gaussian PDF, the following relation holds approxi-
mately (compare Equation (6.22)):

E [σ̂] = σtrue

√
Nev − 1.5
Nev

, (B.1)

where Nev is the number of measurements available to calculate σ̂ and E [σcorr] was substituted
by σtrue. Therefore, the expectation value of the bias b is calculated by

E [b] = σtrue

√
Nev − 1.5
Nev

− σtrue , (B.2)

The expected significance of the bias sb is defined as the expected bias divided by the expected
uncertainty of the bias. Given Nexp pseudo experiments the bias is calculated as the difference
between σtrue and the mean value of the distribution of σ̂. Consequently, the uncertainty of the
bias is given by the uncertainty of the mean value of the distribution of σ̂. This mean value is
denoted as ¯̂σ and its uncertainty is given by

σ ¯̂σ = σdistr√
Nexp

, (B.3)

where σdistr is the standard deviation of the distribution of σ̂. The expectation value of σdistr

is equal to the uncertainty of σ̂. The uncertainty for a standard deviation, such as σ̂ is in first
order given by [AF03]

σσ̂ = σ̂

2
√
Nev − 1 ⇒ E [σ ¯̂σ] = E [σ̂]

2
√
Nev − 1 . (B.4)

Therefore, the expected significance of the bias is

sb = E [b]
E [σ ¯̂σ] = 2

√
Nexp

√
Nev − 1

(
1 −

√
Nev

Nev − 1.5

)
. (B.5)
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Considering Nev = 20 000 for the number of signal events used and Nexp = 100 000 for the
number of pseudo experiments conducted, a bias with a significance of −3.35σ is expected. For
Nev = 80 000, the number of background events, a bias with a significance of −1.68σ is expected.
This leads to the conclusion, that a bias correction is needed.

B.3 Example of obtaining the correlation coefficient between a
fitted parameter and its uncertainty

Considering pseudo experiment studies where a data set is repeatedly generated and fitted, the
correlation coefficient between the fitted parameter λfit

i and its uncertainty σ
λ

fit
i

is defined by:

ρ =

∑Nexp
i=0

∑Nexp
j=0

(
λfit
i − λfit

)(
σ
λ

fit
j

− σ
λ

fit

)
∑Nexp
i=0

(
λfit
i − λfit

)2∑Nexp
j=0

(
σ
λ

fit
j

− σ
λ

fit

)2
,

(B.6)

where Nexp is the number of pseudo experiments produced and the bar indicates the arithmetic
mean. The uncertainty of the correlation coefficient is calculated by [Bow28]

σρ =

(
1 − ρ2

)
√
Nexp

, (B.7)

which might not be correct, if the correlation coefficient is very close to unity or the two-
dimensional distribution of the fitted parameter and its uncertainty is not a two-dimensional
Gaussian. An example of the correlation between a fitted parameter and its uncertainty is
provided in Figure B.1.
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Figure B.1: Two-dimensional histogram of the parameter σsig
vgg fitted to the true distribution and its uncertainty

for 100 000 pseudo experiments, illustrating the correlation between the fitted parameter and its un-
certainty. The correlation coefficient and its uncertainty provided in the text field are obtained using
Equations (B.6) and (B.7), respectively. The corresponding pull distribution is found in Figure 7.2b.

B.4 sWeights calculated by a custom implementation of the
sWeights calculation

The custom implementation of the sWeights calculation according to Equation (6.4) uses the
analytical expression for the covariance matrix of the yield fit defined by Equation (6.5). In
contrast to the sWeights calculated by RooStats (Figs. 7.4a and 7.4b) the sWeights calculated
by the custom implementation show no bias when looking at the difference between the sum
of signal or background sWeights and the corresponding yield from the yield fit (Figs. B.2a
and B.2b). The fluctuations observed arise from the precision of the double-precision floating
point numbers used. According to IEEE 754 there are 53 effective bits of precision for the
mantissa [Ins85]. This results in a precision of 15 to 16 digits. Considering that the number of
signal and background events is of order 104, their precision is of order 10−12. The fluctuations
observed in Figures B.2a and B.2b are of this order.

In addition, the control variable fits to weighted events were additionally performed using the
sWeights calculated with a custom implementation of the sWeights calculation. The mean values
and standard deviations of the pull distributions obtained using either the asymptotic correction
part one or the asymptotic correction part two are given in Tables B.1a and B.1b. The results
are close to the results obtained using the sWeights calculated by RooStats, which are used by
default. The differences observed are much smaller than 1σ (compare Table 7.3 and Table B.1).
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Figure B.2: Distribution of the differences between the sum of sWeights calculated by the custom implemen-

tation of the sWeights calculation and the yield obtained from the yield fit for 100 000 pseudo
experiments. Shown for (a) background and (b)for signal. The differences are expected to be zero
according to Equation (6.6). Good agreement with this expectation is found. The fluctuations ob-
served arise from the finite numerical precision of the double-precision floating point numbers used.
The sWeights calculated by the custom implementation of the sWeights calculation are abbreviated
as cust. sw in the axis titles. In each pseudo experiment the Kahan summation (Sec. 6.4.2) was
used to calculate the sum of sWeights, in order to reduce numerical instabilities.

Table B.1: (a) Mean values and (b) standard deviations of the pull distributions for 100 000 pseudo experi-
ments obtained from the control variable fits to weighted events, using the sWeights calculated by
a custom implementation of the sWeights calculation. The uncertainties were corrected using either
the asymptotic correction part one or the asymptotic correction part two. The signed significances
S

µpull
µ

t
and S

σpull
1 (Eqs. (7.2) and (7.3)) are provided in brackets.

(a)

Parameter asymptotic part one asymptotic part two

λ
bkg
vxx +0.0065 ± 0.0032 (+1.4σ) +0.0065 ± 0.0032 (+1.4σ)
λ

sig
vxx +0.0102 ± 0.0032 (+0.5σ) +0.0102 ± 0.0032 (+0.5σ)

µ
bkg
vgg +0.0027 ± 0.0032 (+0.8σ) +0.0026 ± 0.0031 (+0.8σ)
σ

bkg
vgg +0.0044 ± 0.0033 (+2.0σ) +0.0045 ± 0.0031 (+2.0σ)
µ

sig
vgg −0.0129 ± 0.0032 (−2.4σ) −0.0125 ± 0.0031 (−2.4σ)
σ

sig
vgg +0.0345 ± 0.0032 (−8.5σ) +0.0338 ± 0.0031 (−8.6σ)

(b)

Parameter asymptotic part one asymptotic part two

λ
bkg
vxx 0.9996 ± 0.0022 (−0.2σ) 0.9993 ± 0.0022 (−0.3σ)
λ

sig
vxx 1.0005 ± 0.0022 (+0.2σ) 0.9999 ± 0.0022 (−0.0σ)

µ
bkg
vgg 1.0225 ± 0.0023 (+9.8σ) 0.9915 ± 0.0022 (−3.8σ)
σ

bkg
vgg 1.0291 ± 0.0023 (+12.6σ) 0.9894 ± 0.0022 (−4.8σ)
µ

sig
vgg 1.0239 ± 0.0023 (+10.4σ) 0.9851 ± 0.0022 (−6.8σ)
σ

sig
vgg 1.0128 ± 0.0023 (+5.6σ) 0.9824 ± 0.0022 (−8.0σ)
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B.5 Overview of the pull distributions for all three uncertainty
correction methods

An overview of the pull distributions for all parameters of the control variable PDFs is shown
for the squared weights correction in Figure B.3, for the asymptotic correction part one in
Figure B.4 and for the asymptotic correction part two in Figure B.5.
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Figure B.3: Overview of the pull distributions for all parameters of the control variable PDFs using the squared

weights correction. The meaning of the values in brackets and of µt is explained in Figure 7.2.
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Figure B.4: Overview of the pull distributions for all parameters of the control variable PDFs using the asymp-

totic correction part one. The meaning of the values in brackets and of µt is explained in Figure 7.2.
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Figure B.5: Overview of the pull distributions for all parameters of the control variable PDFs using the asymp-

totic correction part two. The meaning of the values in brackets and of µt is explained in Figure 7.2.
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Table B.2: PDFs of the modified statistical model and their parameters. The variable name Mass is abbreviated
as m and vexex as vxx to obtain shorter indices.

Variable Signal PDF Background PDF Range / a.u.

mass Gaussian:
µ

sig
m = 60 a.u., σsig

m = 4 a.u.
exponential:
λ

bkg
m =−0.025 1

a.u.

[0, 150]

vexex exponential:
λ

sig
vxx =−0.1 1

a.u.

exponential:
λ

bkg
vxx =−0.01 1

a.u.

[0, 350]

vgg Gaussian:
µ

sig
vgg = 120 a.u., σsig

vgg = 10 a.u.
Gaussian:
µ
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vgg = 100 a.u., σbkg
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Figure B.6: di -distributions for 100 000 pseudo experiments based on the modified statistical model (Table B.2)

for (a) the modified parameter λsig
vxx and (b) the modified parameter σsig

vgg. The bias observed for
the pull distribution in Figure 7.10a is confirmed and the observation of no bias in case of the pull
distribution in Figure 7.10b is also confirmed.

B.6 Overview of the study with a modified statistical model

In Table B.2 the parameter values of the modified statistical model are presented. The original
statistical model is described in Table 7.1. An overview of the mean values and the standard
deviations of the pull distributions for all parameters of the control variable PDFs using the three
different uncertainty correction methods is presented in Table B.3. The differences between the
fitted parameters and the true parameter values presented in Figures B.6a and B.6b verify the
observations w.r.t. to the biases in Figures 7.10a and 7.10b.
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Table B.3: Overview of (a) the mean values and (b) the standard deviations of the pull distributions for all
parameters of the control variable PDFs using the three different uncertainty correction methods for
100 000 pseudo experiments based on the modified statistical model described in Table B.2. The
signed significances S

µpull
µ

t
and S

σpull
1 (Eqs. (7.2) and (7.3)) are provided in brackets.

(a)

Parameter squared weights asymptotic part one asymptotic part two

λ
bkg
vxx −0.0003 ± 0.0032 (-0.7σ) −0.0003 ± 0.0032 (-0.7σ) −0.0003 ± 0.0032 (-0.7σ)
λ

sig
vxx +0.0569 ± 0.0187 (+8.8σ) +0.0556 ± 0.0032 (-14.2σ) +0.0543 ± 0.0031 (-14.4σ)

µ
bkg
vgg −0.0004 ± 0.0033 (-0.1σ) −0.0001 ± 0.0032 (-0.1σ) −0.0001 ± 0.0031 (-0.1σ)
σ

bkg
vgg −0.0055 ± 0.0035 (-1.0σ) −0.0059 ± 0.0033 (-1.2σ) −0.0056 ± 0.0031 (-1.2σ)
µ

sig
vgg −0.0018 ± 0.0046 (-2.5σ) −0.0120 ± 0.0032 (-2.7σ) −0.0118 ± 0.0031 (-2.7σ)
σ

sig
vgg −0.0041 ± 0.0046 (-1.6σ) +0.0110 ± 0.0032 (-1.6σ) +0.0111 ± 0.0031 (-1.6σ)

(b)

Parameter squared weights asymptotic part one asymptotic part two

λ
bkg
vxx 1.0068 ± 0.0023 (+3.0σ) 1.0065 ± 0.0023 (+2.9σ) 0.9981 ± 0.0022 (-0.9σ)
λ

sig
vxx 5.9182 ± 0.0132 (+371.6σ) 1.0160 ± 0.0023 (+7.0σ) 0.9884 ± 0.0022 (-5.2σ)

µ
bkg
vgg 1.0438 ± 0.0023 (+18.8σ) 1.0212 ± 0.0023 (+9.3σ) 0.9906 ± 0.0022 (-4.2σ)
σ

bkg
vgg 1.0959 ± 0.0025 (+39.1σ) 1.0422 ± 0.0023 (+18.1σ) 0.9885 ± 0.0022 (-5.2σ)
µ

sig
vgg 1.4700 ± 0.0033 (+143.0σ) 1.0188 ± 0.0023 (+8.3σ) 0.9899 ± 0.0022 (-4.5σ)
σ

sig
vgg 1.4439 ± 0.0032 (+137.5σ) 1.0126 ± 0.0023 (+5.6σ) 0.9899 ± 0.0022 (-4.5σ)

B.7 Estimators of a truncated Gaussian PDF

For a truncated Gaussian PDF defined in the interval [a, b], where a and b are the given truncation
points, the equation system to determine the estimators σ̂ and µ̂ is defined by [Coh57]

σ̂ (Z1 − Z2 − ξ1) − x̄+ a = 0 ,

σ̂2
(

1 − ξ1 (Z1 − Z2 − ξ1) − Z2
b− a

σ̂

)
− σ̄2 − (a− x̄)2 = 0 ,

(B.8)

with
ξ1 = a− µ̂

σ̂
, ξ2 = b− µ̂

σ̂
(B.9)

and
Z1 = φ(ξ1)

I(ξ1) − I(ξ2) , Z2 = φ(ξ2)
I(ξ1) − I(ξ2) , (B.10)

where I(ξ) is defined by

I(ξ) =
∫ ∞

ξ
φ(t)dt with φ(t) = 1√

2π
e− 1

2 t
2
. (B.11)

The weighted mean value of the N measurements xe used for the estimation is denoted by x̄

and defined by

x̄ =
∑N
e=1wexe∑N
e=1we

. (B.12)
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The weighted standard deviation is given by

σ̄2 =
∑N
e=1we (xe − µ̂)2∑N

e=1we
. (B.13)

The value obtained for σ̂ by solving Equation (B.8) needs to be corrected for the bias in the
non-asymptotic case based on Equation (6.16). To solve Equation (B.8) a python program
was written, which is provided below. It uses the scientific software toolkit SciPy [Vir+20] and
especially its interface to the MINPACK library [MGH80].

Listing B.1: Python code to solve Equation (B.8). To load the class inside ROOT, local variables were avoided
and all variables were made class member variables. This results in extensive use of the self keyword.

1 class MLE_Double_Trunc_Gauss ( ) :
" " " Ca l cu la te e s t i m a t o r s f o r mu and sigma o f a doubly truncated Gaussian

3 PDF based Ref . [ 2 ]

5 [ 2 ] Cohen , A. C l i f f o r d . "On the So l u t i on o f Est imating Equations f o r
Truncated and Censored Samples from Normal Populat ions . " Biometrika 44 , no .

7 1/2 (1957) : 225 −36. Accessed November 13 , 2020 . do i : 10 . 2307/2333256 .
" " "

9

def __init__ ( se l f , mean , std , a , b , npx=1000) :
11 " " "

@param mean : Mean value o f the data s e t
13 @param std : Std . dev . o f the data s e t

@param a : Le f t endpoint o f the i n t e r v a l o f the Gaussian PDF
15 @param b : Right endpoint o f the i n t e r v a l o f the Gaussian PDF

" " "
17 s e l f . set_mean_set_std (mean=mean , std=std )

s e l f . a = a
19 s e l f . b = b

s e l f .w = b−a
21

def set_mean_set_std ( se l f , mean=None, s td=None) :
23 " " "

I f no arguments provided j u s t r e s e t the cached mles f o r mu and sigma
25 " " "

i f mean i s not None : s e l f . mean = mean
27 i f std i s not None : s e l f . s td = std

s e l f . cache_mle_mu = None
29 s e l f . cache_mle_sigma = None

31 def phi ( se l f , t ) :
" " " Standard Gaussian PDF " " "

33 return norm . pdf ( t )

35 def I ( se l f , x i ) :
" " " Cumulative f u n c t i o n o f standard Gaussian " " "

37 return 1.−norm . cd f ( x i )

39 def Z( se l f , xi , xi_1 , xi_2 ) :
" " " Eq . 6 in [ 2 ] " " "

41 return s e l f . phi ( x i ) /( s e l f . I ( xi_1 )−s e l f . I ( xi_2 ) )
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43 def get_xi_1 ( se l f , mu, sigma ) :
" " " Standardized l e f t endpoint " " "

45 return ( s e l f . a−mu) / sigma

47 def get_xi_2 ( se l f , mu, sigma ) :
" " " Standardized r i g h t endpoint " " "

49 return ( s e l f . b−mu) / sigma

51 def eq5 ( se l f , mu, sigma , xi_1 , Z_1 , Z_2) :
" " " eq . 5 in [ 2 ] i n v o l v i n g the sample mean

53 Note f o r eq . 5 : v1 = mean − a
" " "

55 return sigma * (Z_1 − Z_2 − xi_1 ) − ( s e l f . mean − s e l f . a )

57 def eq6 ( se l f , mu, sigma , xi_1 , Z_1 , Z_2) :
" " " eq . 6 in [ 2 ] i n v o l v i n g the sample var i ance

59 Note f o r eq . 6 : v2 = std **2 + (mean − a ) **2
" " "

61 s e l f . va l = sigma **2* ( 1 . − xi_1 * (Z_1 − Z_2 − xi_1 ) − Z_2* s e l f .w / sigma )
return s e l f . va l − ( s e l f . s td **2 + ( s e l f . a−s e l f . mean) ** 2)

63

def eq_system ( se l f , a rgs ) :
65 " " " Equation system o f eq . 5 and eq . 6 to be so lved " " "

s e l f .mu, s e l f . sigma = args [ 0 ] , a rgs [ 1 ]
67 s e l f . xi_1 = ( s e l f . a − s e l f .mu) / s e l f . sigma

s e l f . xi_2 = ( s e l f . b − s e l f .mu) / s e l f . sigma
69 s e l f . Z_1 = s e l f . Z( x i=s e l f . xi_1 , xi_1=s e l f . xi_1 , xi_2=s e l f . xi_2 )

s e l f . Z_2 = s e l f . Z( x i=s e l f . xi_2 , xi_1=s e l f . xi_1 , xi_2=s e l f . xi_2 )
71 s e l f . eq5_val = s e l f . eq5 (mu=s e l f .mu, sigma=s e l f . sigma , xi_1=s e l f . xi_1 ,

Z_1=s e l f . Z_1 , Z_2=s e l f . Z_2)
73 s e l f . eq6_val = s e l f . eq6 (mu=s e l f .mu, sigma=s e l f . sigma ,

xi_1=s e l f . xi_1 , Z_1=s e l f . Z_1 , Z_2=s e l f . Z_2)
75 return [ s e l f . eq5_val , s e l f . eq6_val ]

77 def get_mles ( se l f , meth=’ hybr ’ ) :
i f s e l f . cache_mle_mu i s not None and s e l f . cache_mle_sigma i s not None :

79 return s e l f . cache_mle_mu , s e l f . cache_mle_sigma
s e l f . r e s = root ( s e l f . eq_system , x0=[ s e l f . mean , s e l f . s td ] , method=meth ,

81 opt ions={ ’ x t o l ’ : 1e −10})
s e l f . cache_mle_mu , s e l f . cache_mle_sigma = s e l f . r e s . x [ 0 ] , s e l f . r e s . x [ 1 ]

83 return s e l f . cache_mle_mu , s e l f . cache_mle_sigma

85 def get_mle_mu( se l f , meth=’ hybr ’ ) :
s e l f . get_mles ( meth=meth )

87 return s e l f . cache_mle_mu

89 def get_mle_sigma ( se l f , meth=’ hybr ’ ) :
s e l f . get_mles ( meth=meth )

91 return s e l f . cache_mle_sigma

The code in Listing B.1 was used to calculate the estimated µbkg
vgg , σbkg

vgg , µsig
vgg and σbkg

vgg values
directly for each of the 100 000 pseudo experiments. The differences between this direct calcu-
lation and the fitted parameter values obtained from the control variable fit to weighted events
are given in Figures B.7a, B.7b, 7.9a and 7.9b. Clear, but non-trivial correlations between the
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distributions of the differences mentioned above for σbkg
vgg and σsig

vgg and Minuit’s EDM are ob-
served in Figures B.7c and B.7d. These correlations indicate, that the differences observed arise
mainly from the convergence criterion of the fit, which is based on the EDM.

87



B Appendix to Chapter 7

0 0.00002
µ

bkg
vgg : fitted par. - directly estim. par /a.u.

102

103

104

105
Entries
100000
Mean

(−1.1 ± 2.8) × 10−9

Std Dev
(8.815 ± 0.020) × 10−7

Skewness
−0.9000 ± 0.0077

(a)

0 0.0005
µ

sig
vgg: fitted par. - directly estim. par /a.u.

102

104

106

Entries
100000
Mean

(−5.90 ± 0.21) × 10−6

Std Dev
(6.538 ± 0.015) × 10−5

Skewness
−0.5794 ± 0.0077

(b)

-0.0001 0
σ

bkg
vgg : fitted par. - directly estim. par / a.u.

0

20

40

×10−6

Vg
g

bk
g

co
nt

r.
va

r.
fit

E
D

M

0
2000
4000
6000
8000
10000
12000
14000
16000
18000
20000

(c)

-0.0002 0 0.0002
σ

sig
vgg: fitted par. - directly estim. par /a.u.

0

0.05

0.1

×10−3

Vg
g

si
g

co
nt

r.
va

r.
fit

E
D

M

0
2000
4000
6000
8000
10000
12000
14000
16000
18000

(d)
Figure B.7: Distributions of the differences between the estimated parameter values obtained by direct calcula-

tion solving Equation (B.8) and those obtained from the control variable fit for (a) the parameter
µ

bkg
vgg and (b) the parameter µsig

vgg. The observed bias is small compared to the bias found for the
difference between the fitted σ

sig
vgg parameter value and its true parameter value (Fig. 7.5f). In (c)

and (d) the distributions shown in Figures 7.9a and 7.9b are plotted against the EDM provided by
Minuit after the minimization converged. Clear, but non-trivial correlations are observed, showing
that the larger the EDM, the larger is the deviation. This indicates, that the distributions shown in
Figures 7.9a and 7.9b might result from the convergence criterion EDM.
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C
Acronyms

AC1 asymptotic correction part one

AC2 asymptotic correction part two

ALICE A Large Ion Collider Experiment

ATLAS A Torodial LHC Apparatus

BDT boosted decision tree

CERN European Laboratory for Particle Physics. The acronym originates from Conseil Européen
pour la Recherche Nucléaire.

CKM Cabibbo-Kobayashi-Maskawa

CL Confidence Level

CMS Compact Muon Solenoid

CPU Central Processing Unit

CR Cramér-Rao

DAQ Data Acquisition

DOI Digital Object Identifier

EDM Estimated Distance to Minimum

EML Extended Maximum Likelihood

FCNC Flavor Changing Neutral Current

GIM Glashow-Iliopoulos-Maiani

HEP High Energy Physics

HL-LHC High Luminosity LHC
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C Acronyms

HLT High Level Trigger

IBL Insertable B-Layer

ID Inner Detector

ITk Inner Tracker

LEP Large Electron-Positron Collider

LHCb Large Hadron Collider beauty

LHC Large Hadron Collider

LINAC Linear Accelerator

LS1 Long Shutdown 1

LS2 Long Shutdown 2

LS3 Long Shutdown 3

MC Monte Carlo

MDT Monitored Drift Tubes

MLE Maximum Likelihood Estimator

ML Maximum Likelihood

MSSM Minimal Supersymmetric Standard Model

MS Muon Spectrometer

NLL Negative Log Likelihood

NSW New Small Wheel

PDF Probability Density Function

PDG Particle Data Group

PRD Partially Reconstructed Decay

PS Proton Synchrotron

PV Primary Vertex

QCD Quantum Chromodynamics
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C Acronyms

QED Quantum Electrodynamics

QFT Quantum Field Theory

RHS Right Hand Side

RPC Resistive Plate Chamber

RoI Region of Interest

SCT Semiconductor Tracker

SM Standard Model

SPS Super Proton Synchrotron

SQW squared weights correction

TGC Thin Gap Chambers

TRT Transition Radiation Tracker

WLCG Worldwide LHC Computing Grid
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