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1 Introduction
The current theory of particle physics is summarized in the Standard Model [1–5] of par-
ticle physics. It is however widely considered insufficient and therefore various theories
are being developed, in search of New Physics (NP), collectively known as Beyond the
Standard Model (BSM) theories. So far none have been confirmed experimentally. The
experiments at the Large Hadron Collider (LHC) [6] at CERN in Geneva are designed
to probe matter with a center of mass energy of up to 14 TeV to address the open
questions in particle physics. As not all the information about events in the collider
experiments can be observed or known, the proof or disproof of a theoretical model can
be achieved only on a purely statistical basis (by rejecting a hypothesis). But in order to
obtain conclusive statements from statistical processes, sufficiently large data samples
are needed. An important task in the research of High Energy Physics (HEP) is to anal-
yse these large data sets to explore NP. Therefore statistical data analysis techniques
play a crucial role in HEP research.

In particular, the study of the rare decays of B0
s and B0 to two oppositely charged

muons from the ATLAS experiment [7] involves MC data validation. For these studies
the MC distributions are compared to the signal distributions of data for the Boosted
Decision Tree (BDT) input variables. In order to obtain the signal distributions, back-
ground is statistically subtracted from the data for the BDT input variables using a
sideband subtraction technique. However, the aim of this thesis is to study and explore
an alternative technique, namely the sPlot technique [8], by taking an example with a
possible application to the rare B meson decay analysis in the ATLAS experiment.

A brief review of the Standard Model is given in the second chapter. The LHC at
CERN and the ATLAS detector are described in chapters three and four. The theory and
data analysis of the rare decays B0

s → µ+µ− and B0 → µ+µ−, the need for statistical
data analysis in the environment of HEP and the motivation for studying the sPlot
technique are discussed in chapter 5. The sPlot technique and its application on an
example is studied in chapter 6. The sideband subtraction technique and in particular
a new procedure to distinguish the signal and background distributions in case of a
significant number of signal events leaking into the sidebands is discussed in chapter
7. In order to quantify the agreement between distributions obtained from the sPlot
technique and the generated MC distributions, Maximum Likelihood Estimation (MLE)
is performed using the TMinuit package in ROOT and the results are shown in chapter
8. Since the weighted MLE by TMinuit yields incorrect covariance matrix elements, a
correction [9] has to be applied. The theory and implementation of the correction [9] to
obtain the accurate covariance matrix elements for this particular example are described
in chapter 9. Conclusions and further ideas are discussed in chapter 10.
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2 Standard Model of particle physics
The Standard Model [1–5] of particle physics describes the elementary particles and
their interactions via three (out of four) fundamental forces namely strong, weak and
electromagnetic force. The fourth force, gravity, is not addressed in the SM. In the SM
the electromagnetic interactions are described by Quantum Electrodynamics (QED) [10],
strong interactions by Quantum Chromodynamics (QCD) [11] and weak interactions by
Quantum Flavordynamics (QFD) [2–4]. All the above theories are within the framework
of Quantum Field Theory (QFT). According to the SM the known universe (excluding
dark matter and dark energy) consists of the elementary particles as shown in the Figure
2.1.

Figure 2.1: Standard Model of particle physics [12]

All elementary particles are classified into two groups based on the spin quantum num-
ber namely fermions and bosons. Fermions are particles with half-integer spin, follow
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Fermi-Dirac statistics and obeys Pauli’s exclusion principle. Bosons are integral spin
particles and follow Bose-Einstein statistics.

The fermions in the Standard Model are the building blocks of matter (also anti-
matter) and are classified into two groups namely quarks and leptons based on the color
charge. Quarks are particles that possess color charge, hence undergo strong interac-
tions where as leptons do not experience strong force. There are six quarks and six
leptons ordered in three generations of two each as shown in figure 2.1. Only the first
generation particles are stable. Unlike leptons, free quarks do not exist. One quark and
one anti-quark form a meson and three quarks form a baryon. All the visible matter in
the universe is made up of one lepton (electron) and two quarks (u and d).

According to QFT, the interactions of the elementary particles are mediated by gauge
or vector bosons. Photon is the mediator for electromagnetic interaction, self interacting
gluon for the strong interaction and the heavy W,Z bosons for the weak interaction.
The spin zero Higgs boson [13–16] corresponds to a scalar field namely the Higgs field

which is responsible for the mass of the elementary particles.

The Standard Model is a successful theory but not complete. For instance, neutrinos
are assumed to be massless according to the SM but experimentally it was found that
neutrinos do posses mass. Moreover, gravity is not included in the SM and also it does
not explain about dark matter and dark energy. There are a few theories like Super-
Symmetry, String theory, Loop gravity etc proposed by various scientists but none has
been confirmed experimentally.
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3 Large Hadron Collider

3.1 Introduction to LHC
Large Hadron Collider (LHC) [6] is the world′s largest particle accelerator located at
CERN (The European Organization for Nuclear Research) near Geneva, Switzerland.
The LHC, in which protons are accelerated, is installed in an underground tunnel with
circumference 26.7 km, at a depth of 40 to 170 m. Two beams of protons are accelerated
simultaneously in opposite directions and are brought to collision at four interaction
points inside the four main detectors ATLAS [17], CMS [18], LHCb [19] and ALICE [20]
with an instantaneous luminosity of 1034 cm−2s−1. The design center of mass energy is
14 TeV. Each beam in the LHC consists of around 2556 bunches of protons with approx-
imately 1.5x1011 protons per bunch.

The ATLAS and CMS detectors are general purpose detectors built to address all
open questions of particle physics. LHCb is dedicated to B-physics and CP violation
studies. ALICE is designed to study heavy-ion collisions at LHC.

3.2 Path of the protons
The protons, that collide in the LHC [6], begin their journey from a hydrogen bottle.
Hydrogen atoms are ionized and the remaining protons are driven into the linear ac-
celerator LINAC2 (LInear ACceleator) where the protons gain an energy of 50 MeV
and then are accelerated up to 1.4 GeV in the Proton Synchroton Booster (PSB) and
subsequently accelerated up to 26 GeV in the Proton Synchroton (PS). In the fourth
stage they are accelerated up to 450 GeV in the Super Positron Synchroton (SPS) and
finally accelerated to 6.5 TeV in the LHC, before they collide at the interaction points.
It takes around 20 minutes for protons in the LHC to be accelerated to their maximum
speed and energy. The CERN accelerator complex is shown in Figure 3.1.
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Figure 3.1: CERN accelerator complex [21]
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4 ATLAS (A Torodial LHC AppartuS)
ATLAS [17] is one of the four major detectors at the LHC. It is cylindrical in shape
measuring 46 m in length and 25 m in diameter and is located at point 1 of the LHC.
It weighs around 7000 tons and is the largest detector ever constructed for a particle
collider.
The subdetectors in ATLAS can be classified into two types, tracking detectors and

calorimeters. Tracking detectors are used for measuring the paths of the charged particles
and their vertices. The calorimeters are used for measuring energy deposits of the
particles. ATLAS has several layers of various detectors arranged concentrically. The
layout is shown in figure 4.1

Figure 4.1: ATLAS detector layout [17]

4.1 ATLAS coordinate system
The nominal interaction point located at the center of the detector is defined as the
origin, the direction of the beam defines the z-axis and the transverse plane defines the
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x−y plane, which is perpendicular to the z-axis. The positive y-axis is pointing upwards
perpendicular to the plane of the LHC ring and the positive x-axis is defined as pointing
from the interaction point to the center of the LHC ring. The observables defined in the
transverse plane such as momentum and energy are usually named transverse momentum
pT and transverse energy ET , etc. The side-A of the detector is defined as that with
positive z and side-C is that with negative z [17]. The azimuthal angle φ is the angle
measured in the x− z plane ranging from 0 to 2π and the polar angle is the angle from
the beam axis, which also defines pseudorapidity as:

η = −ln
(
tanθ2

)
(4.1)

and the distances in the η-φ space are defined as :

∆R =
√

∆η2 + ∆φ2 . (4.2)

4.2 Inner Detector system
The ATLAS Inner Detector (ID) system [17, 22] is surrounding the beam pipe measur-
ing 7 m in length and 115 cm in radius. It provides high resolution momentum and
vertex measurements. The ID has three subdetectors, namely the pixel detector, Semi-
Conductor Tracker (SCT) and Transition Radiation Tracker (TRT). The ID system is
surrounded by a solenoid magnet, which provides a field strength of 2 T. The cross-
sectional view of the ID system and the schematic diagram of the subdetectors in the
ID are shown in figures 4.2 and 4.3.

4.2.1 Pixel detector
The pixel detector [17,22,23] is the innermost detector and is crucial for tracking charged
particles. It has four layers in the barrel region and three layers on each side of the
endcaps and tracking is possible up to |η| ≤ 2.5. The innermost Insertable B-Layer
(IBL) [23] was installed during the shutdown of the LHC in 2013-2014.
There are a total of 1744 identical pixel modules (excluding the IBL layer). Each pixel

module consists of a 250 µm thick silicon sensor, a flexible polyimide printed-circuit
board and Front End (FE) electronics chips. The sensor and FE chips are connected
by bump bonding. Each sensor has 47232 pixels. The nominal pixel size is 50x400 µm2

(about 90 % of the pixels) and the remaining pixels measure about 50x600 µm2. There
are a total of 46080 readout channels per sensor.
The spatial resolution of the pixel detector is 10 µm in the transverse plane and 115 µm

along the z-axis in both the barrel and the endcap region. It has very high granularity
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Figure 4.2: ATLAS Inner Detector cross-section view [17]

Figure 4.3: ATLAS Inner Detector layout [23]

and precise vertex resolution capabilities which are crucial for detecting short lived
particles such as B mesons and τ leptons.

4.2.2 Semi-Conductor Tracker (SCT)
The SCT [17, 22] comprises four barrel layers and nine disks in each end-cap region as
shown in Figure 4.3. Each silicon sensor measures 6.36 x 6.40 cm2 with 768 readout
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strips and each strip has 80 µm pitch. On each side of the module two sensor chips are
wire-bonded together and further two such detector pairs are glued back to back at a 40
mrad stereo angle to provide two dimensional space points. These space points are later
used for track reconstruction. In total the SCT detector covers 61m2 with approximately
6.3 million readout channels. With the SCT, tracks separated by approximately 200 µm
can be distinguished. It has a spatial resolution of 16 µm in R − φ and 580 µm in z,
both in the barrel and the endcap region.

4.2.3 Transition Radiation Tracker (TRT)
The TRT [17,22] is the outermost detector of the ID system (as shown in figure 4.3) and
consists of gas filled Polyimide drift straw tubes within the region of |η| ≤ 2. Each straw
is 4 mm in diameter containing a gold plated tungsten wire of diameter 31 µm. There
are several layers of TRT modules resulting 50000 straws in total in the barrel region
and a total of 32000 radial straws in the endcap region. The straws are arranged parallel
to the beam pipe in the barrel region and radially in a wheel formation in the endcap
region. The tubes are filled with a non-flammable gas mixture composed of 70% Xe,
27% CO2 and 3% O2. With its 351000 read-out channels, the TRT provides a spatial
resolution of 130 µm in the R− φ plane and approximately 36 hits per track.

The working principle of the TRT is as follows: Charged particles moving at relativistic
speeds emit X-rays (transition radiation) as they traverse the straws and gas mixture.
This radiation is suppressed by a factor 1/m where m is the mass of the particle. As a
result, electron identification is possible as electrons, being the lightest charged particles,
leave a larger number of hits per track compared to pions or muons.
Due to a high particle flux, significant heat is generated within the straws by the

ionization current in the gas. It is estimated to be 10 to 20 mW per straw assuming the
LHC is operated at its design luminosity. They are cooled using a CO2 cooling circuit.

4.3 Calorimetry
Calorimeters are used to measure the energies of particles and the location of the energy
deposits. A particle entering into a calorimeter interacts with the dense material and if
the energy of the incoming particle is high, new particles are created. These new parti-
cles interact with the same material again and more new particles are created resulting
in a cascade. This process continues until the energies of the particles created are too
low to create any new particles. The energy deposited by particles in this shower, which
can be detected in the form of charge or light, serves as a measurement of the energy of
the incident particle.

There are two types of particle showers: Particle showers induced by electromagnetic
(EM) interaction and strong interaction. Therefore the ATLAS calorimeter system [17]
consists of EM calorimeters and hadronic calorimeters (Fig 4.4) covering a range of
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Figure 4.4: ATLAS calorimeter system [17]

|η| ≤ 4.9. Muons are minimum ionizing particles. Therefore, the majority of them pass
through calorimeters without absorption.

4.4 Muon Spectrometer
The Muon spectrometer (MS) [17] is the outermost component of the ATLAS detec-
tor. It is designed to precisely measure the momenta of muons penetrating through the
calorimeters. The superconducting air-core toroid magnets provide the required intense
magnetic field (∼ 4 T) to bend the tracks of the muons. Since many processes trigger
on muons, for example, B0

s → µ+µ−, the MS is also a part of the trigger system and it
is possible to trigger in the range |η| ≤ 2.4. The MS has four sub-detector components,
namely Monitored Drift Tubes (MDT), Cathode Strip Chambers (CSC), Resistive Plate
Chambers (RPC) and Thin Gap Chambers (TGC). Figure 4.5 shows the muon system.

The MDTs are used for the precision measurement of the muon momenta and their
tracks. The chambers consist of three to eight drift tubes. Each tube is 30 mm in
diameter, filled with 93% AR and 7% CO2. They operate at 3 atm pressure. In the
center of each tube there is a 50 µm tungsten-rhenium wire acting as anode. The MDT
resolution is 80 µm per tube and 35 µm per chamber.

The high granularity CSCs are used in the forward region (2.0 < |η| < 2.7), where
the particle flux is high. CSCs are multi-wire proportional chambers with two cathodes
segmented into strips. They provide (η, φ) coordinate information at 60 µm resolution
in the bending plane and 5 mm in the transverse plane.

The RPCs and TGCs are parts of the trigger system. RPCs are installed in the bar-
rel region (|η| < 1.05) and TGCs in the endcap region (1.05 < |η| < 2.4). The RPC
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Figure 4.5: ATLAS muon system [17]

is a gaseous parallel electrode-plate detector without wires. Two resistive phenotic-
melaminic plastic laminate plates are held parallel to each other separated by insulating
spacers 2 mm wide. It contains a gaseous mixture of 94.7% C2H2F4, 5% Iso-C4H10 and
0.3% SF6. The RPCs are operated at a high drift field (4.9 kV/mm) in order to induce
avalanches in the gaseous mixture when an ionized particle traverses. The signals are
read out by metallic strips, which are installed on the outer side of the resistive plates.
A coincidence signal from a system of RPCs is used as a trigger. Using RPCs, it is
possible to trigger on tracks in a wide pT range, from 6 to 35 GeV.

TGCs are multi-wire proportional chambers having smaller wire-to-cathode distance
(1.4 mm) than wire-to-wire distance (1.8 mm). Using a high quenching gas mixture
(CO2 and n-C5H12), these chambers are able to reach quasi-saturation mode. The TGCs
provide good time resolution due to high electric fields (∼ 2900 V) around the wires and
the small distance between them. The RPCs and TGCs have a typical response time of
15 to 25 ns, which suffices to trigger events at every 25 ns (LHC bunch spacing).

4.5 Magnet system
A Magnet system is used for measuring the momenta of charged particles. The tracks of
charged particles are bent in the magnetic field and the radius of curvature of a particle’s
track is directly proportional to its momentum. The ATLAS detector consists of two
types of magnet systems [17] as shown in figure 4.6.
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Figure 4.6: ATLAS magnet system [17]

The superconducting solenoid surrounds the ATLAS Inner Detector system. It is 5.3
m long and 2.5 m in diameter, aligned with the beam axis. It provides a homogeneous
axial field of 2 T for bending the tracks of charged particles in the transverse plane.
The second system consists of superconducting air-core toroid magnetic systems, one

in the barrel region and one on each side of the endcaps. Each toroid has 8 coils. In
the barrel region the bending power is 1.5 to 5.5 Tm in the pseudorapdity range of
|η| < 1.4. In the endcaps the bending power is 1 to 7.5 Tm in the pseudorapidity range
of 1.6 < |η| < 2.7.

4.6 Trigger System
Due to a very high collison rate (40 MHz), saving the data of every event is not feasible.
Therefore a sophisticated trigger system is needed. The ATLAS trigger system [17, 24]
is used to decide whether or not to keep the data of an event for later study. The trigger
system in run 2 consisted of a hardware based trigger known as Level 1 (L1) and a
software based trigger known as High Level Trigger (HLT).

The L1 trigger is used for selecting high pT charged particles, photons, jets and miss-
ing energy. The L1 trigger is also used to define Regions of Interest (ROIs) for each
event, which are physical locations (in (η, φ)) of those regions inside the detector which
have interesting features. The triggering is done on the basis of the trigger menu which
contains various criteria for selecting interesting events. It has a maximum latency of
2.5 µs. Using the L1 trigger the event rate is reduced to 100 KHz.

The HLT trigger is a software trigger, which further processes the events obtained
from the L1 trigger using (partial) reconstruction algorithms. The HLT is used for track
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reconstruction, finding vertices, analyzing ROIs etc. The decision time for the HLT is
200 µs and the event rate is further reduced to 1 KHz.
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5 Statistical data analysis of rare
decays

5.1 Rare decays and new physics
Transitions mediated by W± bosons are called weak charged current transitions and
those mediated by Z bosons are weak neutral current transitions. Weak interactions are
not necessarily flavor conserving. The amplitudes for a change of quark flavor in cross
generations, via weak charged current transitions, are given by the Cabibbo–Kobayashi–Maskawa
(CKM) matrix elements [25,26].

However, unlike weak charged current transitions, Flavor Changing weak Neutral Cur-
rent (FCNC) transitions are forbidden at tree level (for example s → b + Z0) and can
take place only indirectly via the exchange of W± (such as b → c + W− → s + Z0),
resulting in a loop diagram. This was explained by the GIM mechanism [4]; with the
probability for such an FCNC decay being proportional to the mass of the quark in-
volved. As a result the FCNC decays are highly suppressed in the SM.

The decay B0
s → µ+µ− is one such example of FCNC transitions. Feynman diagrams

are shown in Figure 5.1. As a B0
s particle is spin-less, both the final state muons should

be either left handed or right handed. Therefore this decay is further suppressed by the
helicity factor.

The theoretical formula [27–29] and prediction value (from the SM) of the branching
ratio (B) of Bs → µ+µ− is given by:

B(B0
s → µ+µ−)SM = G4

Fm
4
W sin4θW
8π5 τBf

2
BmBm

2
µ

√
1− 4m2

µ

m2
B
|C10V

∗
tbVts|2 ,

where GF is the Fermi constant, MW the W boson mass, θW the weak mixing angle,
τB the B0

s lifetime, f 2
B the lifetime decay constant, mµ the muon mass, mB the B0

s mass,
C10 the Wilson coefficient and both the V ∗tb and Vts are the CKM matrix elements. The
SM branching fraction is predicted to be [30]:

B(B0
s → µ+µ−)SM = 3.65± 0.23× 10−9 .

However, if there are new heavy particles, e.g as predicted by the Minimal Supersym-
metery Standard Model (MSSM) theory, like A0, χ0 (Figure 5.1b), it will alter the FCNC
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Figure 5.1: Decay of B0
s → µ+µ− [31]

transition amplitudes. Precisely measuring the decay rates of B0
s → µ+µ− is therefore

necessary not only to find deviations from the SM but also to set limits to the BSM
theories, in particular to the MSSM. Hence rare decays of hadrons containing a heavy
beauty quark allow us to explore New Physics.

5.2 The need for statistics in data analysis
The final states corresponding to the desired decay are called signal events (or signal).
Background events (or background) are events that appear to have the same final state
as signal events but not originating from the decay searched for. The main reasons for
background are partially reconstructed events, misidentification of particles and uncor-
related decays mimicking signal.

As the FCNC decays are very rare, studies of these decay modes require a large data
sample to observe sufficient relevant particles. The ratio of the number of signal events
to the number of total events (signal fraction) is so low, that the detection of the signal
is not trivial. Moreover, it is impossible to determine whether a single event is back-
ground or signal on an event by event basis. Therefore only with statistical techniques
is it possible to obtain precise results. The signal fraction is improved by statistically
rejecting the background.

The vital role, that statistical techniques play in High Energy Physics (HEP) data
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analysis, especially in background rejection, is the motivation for this thesis.

5.3 Statistical techniques in the data analysis of
B0
s → µ+µ− and B0 → µ+µ−

In the ATLAS run 2 analysis (2015-16), the branching fractions of the rare decays
B0
s → µ+µ− and B0 → µ+µ− are measured relative to the reference decay modes

B± → J/ψ(→ µ+µ−)K±, which is more abundant and has a well measured branching
fraction.

The analysis is performed using multivariate techniques [7]. Due to the rarity of the
signal events a completely data-driven analysis is not possible. Therefore events are
simulated using Monte Carlo (MC) methods to improve statistics. However, a MC data
set has to be validated against data to use it in the analysis. In order to validate the MC
data set, signal distributions in the data are compared to the MC signal distributions for
Boosted Decision Tree (BDT) input variables in the reference channels B± → J/ψ K±

and B0
s → J/ψ φ.

In order to obtain the distributions for signal from the experimental data set, a side-
band subtraction technique is used (explained in detail in chapter 7). Briefly, the idea is
to use the B+ mass variable to separate signal and background statistically. As a result,
the signal distributions of the BDT input variables are obtained. Hence the B+ mass is
called the discriminating variable. From the MC studies it is concluded that the signal
Probability Density Function (PDF) is a double Gaussian and a decaying exponential
is used as background PDF. In this technique the discriminating variable distribution
is divided into two regions by applying cuts. The region within the cuts is called the
signal region and the rest sideband region. The cuts are applied at 5180 MeV and 5380
MeV in a total range of 5080-5480 MeV. The task is to estimate the background events
in the signal region from the sidebands and to statistically subtract those events from
the total number of events in the signal region to obtain the signal-only distribution.
A simultaneous binned maximum likelihood fit is performed on the B+ mass (discrim-
inating) variable. From the fit the signal fraction (fs = signal events/total events) is
known. Further, this fs is used to obtain the signal distributions for the BDT input
variables such as pointing angle, isolation and χ2

PV,DV xy (see table 1 in [7]). The plots in
Figure 5.2 show the MC and data distributions for some BDT input variables for both
the reference channels.

The signal distribution plots of the BDT input variables are compared to the MC data
set. These comparison plots are needed for the validation of the MC samples. As the MC
samples consist of only signal events, it is extremely important to separate signal from
background in the data in order to compare it with the MC sample. As explained above,
a sideband subtraction technique is used for this purpose. However, an alternative tech-
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Figure 5.2: Data and MC distributions (for signal) in B+ → J/ΨK+ for discriminating
variables: (a) |α2D|, (b) ln(χ2

PV,DV xy), (c) I0.7. The variable I0.7 is also shown
in (d) for B0

s → J/ψφ [7]

nique, namely sPlot technique, can be used for the same purpose; i.e. to separate the
signal from background in a mixed data set. Unlike the sideband subtraction technique,
the sPlot technique does not need signal region cuts. Therefore it is advantageous to use
the sPlot technique in cases where signal and background distributions are not cleanly
separated.

The focus of this thesis is to understand and explore the sPlot technique [8] (explained
in the next chapter). This technique can also be used to estimate the background and
signal distributions in a mixed data set, which in turn helps to improve the signal to
background ratio. This technique is studied with the aim of applying it to produce MC
- data comparison plots for the B0

s → µ+µ− data analysis.
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6 Studying the sPlot technique

6.1 Introduction
The sPlot technique, introduced by M. Pivk and F.R. Le Diberder, is used to unfold data
distributions [8]. The idea of the sPlot techinque is explained in the first two sections of
this chapter and a detailed study of the technique with an example is discussed in the
rest of the chapter.

In general, the data contains events from different species (for example, background
and signal) merged in one sample. In the data analysis, it is necessary to know the un-
derlying distribution for a particular species of events (such as the signal distribution)
and the sPlot technique can be used in order to separate the distributions statistically.
The variables, which constitute the data, can be divided into two classes. The first
class consists of a set of variables for which the distributions (the form of the underlying
PDFs) for each species is known. These are called discriminating variables. The second
class are called control variables for which it is not necessary to know the underlying
forms of the distributions for all species. The sPlot technique estimates the distributions
for each species of the control variables using only the known distributions of discrimi-
nating variables. In this way, the distributions of the control variables are reconstructed
without the use of any prior knowledge of the control variables. In the context of particle
physics data analysis, sPlot is a statistical technique, which allows to separate signal and
background distributions and keeping track of the statistical uncertainties per bin. The
crucial assumption for sPlot to work is that the distributions of control variables are not
correlated to the distributions of discriminating variables.

6.2 sPlot technique execution
The objective is to use the sPlot technique to reconstruct the distributions of all con-
trol variables for all species without using any prior knowledge about them but using
solely the distributions of the discriminating variables. For simplicity, the execution of
the technique is discussed by considering only one variable as the discriminating variable.

In order to meet the objectives sWeights are calculated (see explanation below) for
each species. Then, to obtain the distribution for a specific species, histogram bins are
filled with the sWeights of the corresponding species as weighting factors for each event
for the control variables.
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To illustrate: If the data contains two species (signal and background), two sets of
sWeights are calculated; one for the signal and one for the background. Then, to obtain
the distribution for a control variable of a specific species, e.g signal, the histogram is
filled with signal sWeights as weighting factors to determine the signal distribution for
that control variable.

The following symbols are used:

N is the total number of events,

Ns is the number of species of events populating the data sample,

Ni is the number of events expected on the average for the ith species,

y is the set of discriminating variables,

fn is the PDF of discriminating variables for the nth species,

fi(ye) denotes the value taken by the PDFs fi for event e,

x denotes the set of control variables,

Vn,j are covariance matrix elements.

The formula to calculate an sWeight is given by the equation:

sPn(ye) =
∑Ns
j=1 Vnjfj(ye)∑Ns
k=1 Nkfk(ye)

(6.1)

where sPn(ye) is the sWeight for discriminating variable y, species n and event e.

The denominator in (6.1) is the normalization factor. In order to use this formula
two things must be calculated first; the number of events per species and the covariance
matrix elements.

Firstly, to know the total number of events in each species, a simultaneous maximum
likelihood fit is performed to the discriminating variable (the method of maximum likeli-
hood fit is explained in chapter 8). From the fit, the parameter values for the underlying
PDFs fn(y) and the total number of events Ni in each species are determined.

The covariance matrix elements are calculated for the parameters of discriminating
variables. The second derivative of the likelihood function L with respect to the pa-
rameters at the central values from the fit yields the inverse covariance matrix elements.
Equation 6.2 is used to determine the inverse covariance matrix elements V −1

nj and then
the covariance matrix elements are calculated by inverting the matrix V −1:

23



V −1
nj = ∂2(−L)

∂Nn∂Nj

=
Ns∑
n=1

fn(ye)fj(ye)
(∑Ns

k=1 Nkfk(ye))2
. (6.2)

A set of sWeights for each species are provided by (6.1). They are used in filling the
histogram bins to obtain the distributions of the control variables for each species. The
sum of the weights for all events of a particular species is equal to the number of events
for that species provided by the fit.

The uncertainties per bin are calculated by the following formula:

σ[Nn sM̃n(x)δx] =
√∑
e⊂δx

(sPn)2 (6.3)

where M̃ is the x distribution and the sum ∑
e⊂δx runs over the Nδx events for which

xe (i.e. the value taken by the variable x for event e) lies in the x bin centered on x̄ and
of total width δx.

6.3 Studying the sPlot technique through an example
The idea is to study how the sPlot technique works by considering an example inspired
by a situation encountered in particle physics data analysis. In this example, there are
two variables in total: one discriminating, namely mass (m) and one control variable,
namely v. The data set contains two species of data, signal and background. The goal
is to estimate the sub-distributions for v i.e, signal and background, assuming the forms
of the underlying PDFs of the mass variable m for both the signal and background are
known.

The following steps are taken:

1. Data simulation (using the Monte Carlo method),
2. Calculation of sWeights,
3. Filling the v histograms with sWeights for both signal and background.

The following symbols are used:

Ntot is the number of total events,

Nsig is the number of signal events,

Nbg is the number of background events,
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y is the discriminating variable (mass),

fsig(y) and fbg(y) are the PDFs of the discriminating variable (mass) for signal and
background,

fsig(ye) and fbg(ye) are the values for PDFs of the discriminating variable m for signal
and background for an event e.

6.3.1 Data simulation
In this example data is simulated using a Monte Carlo (MC) method. The data is
simulated in ROOT using the TRandom3 random number generator.
The data is generated using two different functional forms namely, Gaussian and

Exponential. In general, Gaussian and Exponential functions do not have a finite range.
But in this example, as the data is generated in a fixed range, the normalization is done
accordingly. The exact functional forms used in this example are given by:

g(x) = 1√
2πσ · [erf( b−µ√2σ )− erf(a−µ√2σ )]

· e−
(x−µ)2

2σ2 , (6.4)

h(x) = 1
τ · (e− aτ − e− bτ )

e−
x
τ . (6.5)

The total number of events Ntot is a random number obtained from a Poissonian with
a mean of 100 000. The parameter values of the function and range of each variable are
given for each species in Table 6.1.

Variable Variable type Signal Background Range
m discriminating Gaussian (µ = 60, σ = 4) Exponential (τ = 40) [0,150]
v control Exponential (τ = 80) Exponential (τ = 100) [0,350]

signal fraction fs = 0.2

Table 6.1

The generated data is shown in figures 6.1 and 6.2. The generated data for v is also
plotted in log scale (Figure 6.3) to visualize the different slopes of signal and background.
The reason, that variable m is designed to comprise a Gaussian signal with an exponen-
tial background, is because this is similar to the B+ mass distribution in B+ → J/ψ K+.
Similarly, the reason that v comprises two decaying exponentials separated by slightly
different decay rates, is because this mimics the problem of distinguishing the lifetimes
of two elementary particles. The idea is to use the sPlot technique to obtain the dis-
tributions of signal and background for v, represented by the red dotted and black line
histograms in Figure 6.2, from the variable m.
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Figure 6.1: MC generated data for the discriminating variable mass.

Figure 6.2: MC generated data for the control variable v.
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Figure 6.3: MC generated data for the control variable v in log scale.

6.3.2 Calculation of sWeights
As there are two species, namely signal and background, in this example there are
two sets of sWeights, one for signal and one for background. In order to calculate
the sWeights the number of events in each species should be known. A simultaneous
un-binned maximum likelihood fit (red dotted line in Figure 6.4) is performed for the
discriminating variable m and the signal fraction and parameter values are obtained.
Then the number of signal and background events is calculated from the equations:

Nsig = fs ×Ntot , (6.6)

Nbg = Ntot −Nsig . (6.7)

The parameter values of the discriminating variable fit are used in the calculation of
sWeights.

The next step is to calculate the covariance matrix elements. As there are two species
the covariance matrix is a symmetric 2×2 matrix. The expressions for the matrix ele-
ments are given by:

V −1
11 = V −1

sig,sig = ∂2(−L)
∂Nsig∂Nsig

=
Ntot∑
e=1

fsig(ye)fsig(ye)
(Nsig · fsig(ye) +Nbg · fbg(ye))2 , (6.8)
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Figure 6.4: Simulatnous maximum likelihood fit for the discriminating variable mass

V −1
22 = V −1

bg,bg = ∂2(−L)
∂Nbg∂Nbg

=
Ntot∑
e=1

fbg(ye)fbg(ye)
(Nsig · fsig(ye) +Nbg · fbg(ye))2 , (6.9)

V −1
12 = V −1

12 = V −1
sig,bg = ∂2(−L)

∂Nsig∂Nbg
=

Ntot∑
e=1

fsig(ye)fbg(ye)
(Nsig · fsig(ye) +Nbg · fbg(ye))2 . (6.10)

The next step is to calculate the sWeights. The Nsig, Nbg calculated above and the
covariance matrix element values Vij along with the function value of the discriminating
variable m for both signalfsig(ye) and background fbg(ye) are used in order to obtain the
sWeights for each event for the corresponding species:

sPsig(ye) = Vsig,bg · fsig(ye) + Vsig,sig · fsig(ye)
Nsig · fsig(ye) +Nbg · fbg(ye)

, (6.11)

sPbg(ye) = Vbg,bg · fbg(ye) + Vbg,sig · fsig(ye)
Nsig · fsig(ye) +Nbg · fbg(ye)

. (6.12)

6.3.3 sPlot histograms and results
The next step is to fill the histograms for the control variable v using the corresponding
sWeights. Thus, the sPlot technique produces weighted histograms. Figure 6.5 show the
distributions of sPlot histograms for v for both species.

28



Figure 6.5: sPlot distribution for v for both signal and background

For a visual comparison the generated (true) histograms of the two control variables
for both species are plotted as an overlay to the histograms obtained by the sPlot tech-
nique in Figure 6.6.

The shapes of the distributions obtained from the sPlot technique match with the
generated distributions. In order to quantify the agreement, maximum likelihood fits
are performed for the distributions obtained from this technique and compared with the
true parameters. This is discussed in Chapter 8.
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Figure 6.6: sPlot distributions with the generated data overlay for both signal and back-
ground for v
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7 Sideband subtraction technique

7.1 Introduction
Sideband subtraction is another statistical technique to separate different species of data
(for example, signal from background) for the control variables. As a part of this thesis
this technique was also studied in detail, along with the sPlot technique, by considering
the same example as described in the previous chapter.

7.2 Sideband subtraction technique execution
The sideband subtraction technique is illustrated by a diagram, as shown in Figure 7.1.
It is the plot of the discriminating variable (mass) distribution for this example. In this
technique, the data plot is divided into two regions by applying cuts to the discrimi-
nating variable. The region between the cuts is the signal region (SR) and the rest are
the sideband regions (SB). The cuts are determined by the user such that the sidebands
contain only (or mostly) background events.

Figure 7.1: Plot illustrating the sidebands and the signal region with cuts applied at
mass values 50 a.u and 70 a.u.
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As shown in Figure 7.1, the cuts are chosen in such a way that the number of signal
events leaking into the sidebands is negligible. In section 7.4 a case with a significant
number of signal events leaking into the sidebands will be discussed.

The goal is to extract the signal and background distributions for the control vari-
ables using the distribution of the discriminating variable. For simplicity, the method is
explained to obtain the signal and background distributions for one control variable only.

To obtain the background distribution for the control variable, the events from the
sidebands (region C and D in Figure 7.1) of the discriminating variable are used to ob-
tain the shape of the background distribution for the control variable.

To obtain the signal distributions for the control variable, the background events are
to be subtracted from the total entries per bin in the signal region.

The following steps are performed.

1. A maximum likelihood fit is performed for the discriminating variable to obtain
the signal fraction fs and subsequently Nsig and Nbg.

2. Cuts are defined on the discriminating variable which define the signal region and
the sidebands.

3. For the events in the sidebands, the distribution of the control variable is plotted.
Then the distribution is scaled with the total number of background events Nbg. This
scaled distribution gives the background distribution for the control variable. This is
labeled as plot 1.

4. For the events in the signal region, the distribution for the control variable is plot-
ted. This is labeled as plot 2.

5. The number of background events in the signal region is calculated by:

NSR
bg = Nbg −NSB

bg . (7.1)

6. Plot 1 is scaled to the total number of background events in the signal region NSR
bg

by using the following scaling factor:

Wsig = Nbg
SR

Ntot
. (7.2)

This scaled plot is labeled as plot 3.

7. By subtracting events bin by bin in plot 2 from plot 3, the signal distribution for
the control variable is obtained.
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7.3 Example with negligible signal leak into sidebands
The task is to obtain the signal and background distributions for the control variable v
using the discriminating variable m as described in section 6.3.

As in this case the leak of signal events into the sidebands is negligible, all the events
in the sidebands are considered to be background events and thus used to obtain the
background distribution.

To obtain signal and background distributions for control variable v the following
steps are performed.

1. In this example the cuts are applied for the discriminating variable m at 50 a.u
and 70 a.u.

2. For the events in the sidebands, the distribution for v is plotted and scaled to total
number of background events Nbg as shown as black dotted points in Figure 7.2 (plot
1). This is the background distribution for control variable v.

3. For the events in the signal region, the distribution for v is plotted (plot 2). This
is shown in Figure 7.3 and for better illustration of the problem the true MC generated
data is also shown in Figure 7.4. As shown in Figure 7.4 the events for v corresponding
to the signal region in m contains background.

4. The number of background events in the signal region NSR
bg is calculated by (7.1).

5. Plot 1 is scaled to NSR
bg (plot 3). This is shown in Figure 7.5.

6. By subtracting events bin by bin in plot 2 from plot 3, the signal distribution for
the control variable v is obtained (white boxed points in Figure 7.2).
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Figure 7.2: Black dotted points - distribution of v for the events in the sidebands, scaled
to Nbg. White square points - distribution of v for the events in the signal
region after subtracting the background.

Figure 7.3: Distribution of v for the events in the signal region.
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Figure 7.4: MC generated (true) data distribution of v for the events in the signal region.
The black line shows the background contamination in the signal region
which should be subtracted bin by bin from the total number of events (blue
dot dash line) in order to obtain the signal distribution(red dotted line)

Figure 7.5: Distribution of v for the events in the sidebands, scaled to NSR
bg .
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7.4 Sideband-subtraction technique with a significant
number of signal events leaking into the sidebands

An example of the case, where signal leaking into the sidebands for the discriminating
variable is significant and cannot be neglected, is now considered: regions E and F in
Figure 7.6 illustrate the signal leak into the sidebands.

In order to have reasonable statistics for the signal leak, the width σ of the Gaussian
for m is increased from 4.0 to 7.0 during the MC data generation.

Figure 7.6: Illustrating sideband cuts with a larger signal leak into the sidebands.

The goal here is the same: to obtain the signal and background distributions for v
using the distribution of the discriminating variable m.

The problem in this case is a bit more complicated than the previous case. As there
is a significant leak of signal events into the sidebands, the sidebands consist of both
signal and background events and the same is true for the signal region. A simplified
picture of the data distributions according to species for v is shown in Figure 7.7. PSR

is the signal region histogram and PSB is the sidebands histogram. The task is to find
two weights for each region such that when filled with those weights only signal for v
remains, which is labeled as PSS.

Two weights are calculated, namely W SR
sig and W SB

sig , such that:

W SR
sig PSR

i +W SB
sig PSB

i = PSS
i (i = A,B) (7.3)
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Figure 7.7: Naive model of the signal and background distributions in two bins for the
control variable. PSR is the distribution in the SR, PSB is the distribution in
the SB and PSS is the sideband-subtracted distribution.

where PSR
i , PSB

i and PSS
i indicate the number of elements in the plots PSR,PSB and

PSS for species i (Figure 7.7).

By replacing A and B with signal and background and writing both the equations,
two equations are obtained:

W SR
sig N

SR
sig +W SB

sig N
SB
sig = NSR

sig +NSB
sig , (7.4)

W SR
sig N

SR
bg +W SB

sig N
SB
bg = 0 (7.5)

with the constraint NSR
sig +NSB

sig = Nsig.

Equation (7.4) imposes the condition for Nsig to be maximum, whereas (7.5) provides
the condition for Nbg to be zero.

Solving the system of equations 7.4 and 7.5 results in:

W SR
sig =

NsigN
SR
bg

NSR
sig N

SB
bg −NSB

sig N
SR
bg

, (7.6)

W SB
sig = −

NsigN
SR
bg

NSR
sig N

SB
bg −NSB

sig N
SR
bg

. (7.7)
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As shown in (6.6) and (6.7), the Nsig and Nbg are obtained from the discriminating
variable fit shown in Figure 7.8.

Figure 7.8: Maximum likelihood fit for discriminating variable mass. The width (σ) is
increased to 7.0 a.u in this case.

The procedure to obtain the v signal distribution from the weights calculated in (7.6)
and (7.7) is shown in Figure 7.9.

Similarly, in order to obtain the weights for the background distribution of the control
variable v the following simultaneous equations are to be solved:

W SR
bg N

SR
bg +W SB

bg N
SB
bg = NSR

bg +NSB
bg , (7.8)

W SR
bg N

SR
sig +W SB

bg N
SB
sig = 0 . (7.9)

with the constraint NSR
bg +NSB

bg = Nbg.

This results in:

W SR
bg =

NbgN
SB
sig

NSB
sig N

SR
bg −NSR

sig N
SB
bg

, (7.10)

W SB
bg = −

NbgN
SR
sig

NSB
sig N

SR
bg −NSR

sig N
SB
bg

. (7.11)
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Figure 7.9: Procedure to obtain the signal distribution for v using the weights from (7.6)
and (7.7).

These weights are used to obtain the background distribution for the control variable
v in a similar way the signal distribution for v has been obtained. Figure 7.10 shows the
signal and background distributions for v.
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Figure 7.10: Distributions of the signal and the background for v obtained from executing
the sideband subtraction technique. (Case in which there is a significant
leak of signal events into the sidebands.)

7.5 Comparisons and summary
For comparison, the generated (true) distributions of two control variables for both
species are plotted as an overlay to the distributions obtained by the sideband sub-
traction technique for negligible signal leak case in Figure 7.11. Subsequently, Figure
7.12 illustrates the comparison between the distributions obtained by the sideband sub-
traction technique with the larger leak and generated distributions. The shapes of the
distributions obtained by this technique for v match the shapes of the generated distri-
butions for signal and background.
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Figure 7.11: Distributions of the signal and the background for v obtained from executing
the sideband subtraction technique with generated data overlayed (a case
with negligible leak of signal events into the sidebands).

Figure 7.12: Distributions of the signal and the background for v obtained from executing
the sideband subtraction technique with generated data overlayed (a case
with significant leak of signal events into the sidebands).
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8 Maximum likelihood estimation
The Maximum Likelihood Estimation (MLE) is a method to estimate the parameter
values of the PDF in a statistical model, given the data set. In application, based on
the problem, the MLE method can be employed in two ways; with and without weights.
These are discussed in sections 8.1 and 8.2.

8.1 Maximum likelihood estimation without weights
8.1.1 Likelihood function
Consider a random variable x distributed according to a PDF f(x; ~θ) (~θ is a set of pa-
rameters). It is assumed that the form of the PDF is known but the value(s) of the
parameters ~θ are not known. The idea of the Maximum Likelihood (ML) method is
to estimate the value(s) of these parameters given a finite data set so that the model
describes the given data as well as possible.

Assuming that the data points are independent of each other and that all the data
points are distributed according to the same PDF, the combined probability of these
data points, given the PDF, can be written as the product of the probabilities of each
data point:

f(x1, x2, ...xn|~θ) = f(x1; ~θ) · f(x2; ~θ) · ... · f(xn; ~θ) =
n∏
i=1

f(xi; ~θ) . (8.1)

Then the likelihood function is defined as:

L(~θ|x1, x2, .., xn) =
n∏
i=1

f(x1, x2, .., xn|~θ) . (8.2)

The probability of the distribution of the data points given the PDF’s parameters is
the same as the likelihood of the PDF given the data set. Therefore, maximizing the
likelihood function yields the parameter values which best model the data set.

8.1.2 Maximum likelihood estimator
The task is to estimate the values of the parameters θi by maximizing the likelihood
function L such that the PDF is the best description of the data set. The values of θi,
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that maximize the likelihood L, are the maximum likelihood estimators for the param-
eters.

Maximizing the likelihood L is given by:

∂L
∂θi

= 0; (i = 1, 2, 3, .., n) . (8.3)

It is often quite difficult to maximize the likelihood function L directly, however max-
imizing the logL is simpler because the product of logarithms can be expressed as a
sum. Logarithm is a monotonic function and therefore it ensures that the maximum
value of the logarithm of the likelihood (logL) occurs at the same point as the original
likelihood function:

∂ logL
∂θi

= 0; (i = 1, 2, 3, .., n) , (8.4)

∂ logL
∂θ1

+ ∂ logL
∂θ2

+ ...+ ∂ logL
∂θn

= 0; (i = 1, 2, 3, .., n) . (8.5)

8.1.3 Discriminating variable fit
As explained in section 6.3, the discriminating variable (mass) fit is a maximum likeli-
hood fit without weights. The form of the PDF is given by:

p(x) = fs g(x) + (1− fs)h(x) (8.6)

where g(x) and h(x) are given in (6.4) and (6.5) and fs given in Table 6.1 .

The log likelihood is given by:

logL =
N∑
i=1

log p(xi) . (8.7)

The fit is performed in ROOT using the TMinuit class. To quantify the goodness of
the fit, a bin by bin pull plot is drawn along with the fitted distribution as shown in
Figure 8.1.

The bin by bin pull values are calculated by:

Pull = zi − f(xi)
σi

(8.8)

where xi is the value of the x coordinate at the center of the ith bin, f(xi) the value
of the PDF at xi, zi the bin contents and σi the error of the ith bin.
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Figure 8.1: Unbinned fit for the discriminating variable (mass) along with the pull plot

8.2 Maximum likelihood fit with weights
As explained in section 6.3 the histograms obtained by the sPlot technique are weighted
histograms. Therefore weighted MLEs are performed.

The likelihood function for the weighted case is given by:

L(~θ|x1, x2, .., xn) =
n∏
i=1

f(xi; ~θ)wi (8.9)

where wi is the weight for the ith event.

The log likelihood logL is given by:

logL =
N∑
i=1

wi · log f(xi) . (8.10)

The weights wi are expressed in the power as seen in (8.9), because, for example, an
event filled with weight two is equivalent to filling the same event twice.

The Figures 8.2 and 8.3 show the weighted fit results for the sPlot histograms with
pull distributions for the control variables v.
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Figure 8.2: Unbinned weighted maximum likelihood fit for the v signal distribution along
with the pull distribution.

Figure 8.3: Unbinned weighted maximum likelihood fit for the v background distribution
along with the pull distribution.

45



8.3 Summary
From the fit values and the pull distributions it is clear, that the central values of the
fit results for the signal and background PDFs of the control variable are within 3σ of
the true values (Table 6.1). Therefore, it is concluded, that by using the sPlot technique
the distributions of the two species of the control variable are obtained accurately.

In addition, high statistics tests have been performed in order to confirm that the
values of the errors obtained from TMinuit fits are accurate. The mechanism of the
tests performed and results are discussed in the next chapter.
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9 Correction of uncertainties for
weighted maximum likelihood
estimation

9.1 Closure tests for MLE
In the process of executing the sPlot technique the MLE method is used for the discrim-
inating variable fit and a weighted MLE method is used for fitting the control variable
distributions obtained by the sPlot technique. In order to verify that the MLE using
TMinuit is accurate, a pseudo experiment cycle consisting of data generation, obtaining
sPlot distributions and then fitting the sPlot distributions using the MLE method is
performed 10 000 times to obtain high statistics. Then the pull distributions for all the
fitted parameters are drawn and analyzed. The pull distribution values are calculated by:

Pull = θi − θtr
σθi

(9.1)

where θi is the central value of the parameter θ and σθi the error on θ for ith trial. θtr
is the true value of θ. (In the example, the discriminating variable fit has 4 parameters
and control variable v fit has only one parameter τ .)

The expected results for unbiased fits (for parameter θ) are, that
The mean value of the pull distribution P θ

µ = 0, and
The width of the pull distribution P θ

σ = 1.

9.1.1 Closure test results of MLE for the discriminating variable
The pull distribution for the parameter µ of the discriminating variable is shown in
Figure 9.1. The pull distributions for all the other parameters are shown in Appendix
B but the results are summarized in Table 9.1.

As shown in Table 9.1, the mean value of the pull distribution (P θ
µ) is zero within

the statistical uncertainty and the width (P θ
σ ) is equal to one for all the parameters.

Therefore it is concluded that the MLE for the discriminating variable using TMinuit is
accurate.
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Parameter θtr θ̄fit P θ
µ P θ

σ

µ 60.0 59.9997 ± 0.0003 -0.0086 ± 0.0100 1.0050 ± 0.0071
σ 4.0 4.0000 ± 0.0003 0.0003 ± 0.0099 0.9904 ± 0.0070
τ 40.0 40.0001 ± 0.0018 0.0005 ± 0.0100 1.0030 ± 0.0069
fs 0.2 0.2000 ±1.6× 10−5 0.0058 ± 0.0098 0.9872 ± 0.0069

Table 9.1: θtr is the true value of the parameter θ, θ̄fit the mean of the central value of
the fit parameter, P θ

µ is the mean value of the pull distribution for parameter
θ and P θ

σ the width of the pull distribution for parameter θ.

Figure 9.1: Pull distribution for parameter µ for the discriminating variable.
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9.1.2 Closure test results of MLE for the control variable
The pull distributions for the parameter τ corresponding to the control variable v for
both the signal and the background are shown in Figures 9.2 and 9.3. The results are
summarized in Table 9.2. The mean value is zero within the statistical uncertainty.
However, the width (P θ

σ ) is not equal to one. Hence it is concluded that the errors ob-
tained from MLE using TMinuit for the case with weights are not accurate and therefore
the uncertainties reported by the MLE need to be corrected.

Parameter θtr θ̄fit σ̄TM
τsig 80.0 80.0005 ± 0.0080 0.6519 ± 9.5 ×105

τbg 100.0 99.9981 ± 0.0047 0.4539 ± 3.4 ×105

Parameter P θ
µ P θ

σ

τsig -0.0164 ± 0.0123 1.2396 ± 0.0087
τbg -0.0120 ± 0.0105 1.0541 ± 0.0074

Table 9.2: θtr is the true value of the parameter θ, θ̄fit the mean of the central value of
the fit parameter, σ̄θTM is the mean of the uncertainty on the central value of
parameter θ (before correction), P θ

µ is the mean value of the pull distribution
for parameter θ and P θ

σ the width of the pull distribution for parameter θ.
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Figure 9.2: Pull distribution for τ signal

Figure 9.3: Pull distribution for τ background
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9.2 Error correction for weighted maximum likelihood
estimation

The log likelihood (logL) for the weighted case is given by:

logL =
N∑
i=1

wi · log f(xi) (9.2)

where wi are the weights and N the total number of events.

The central value of the parameter estimation is asymptotically distributed according
to a normal distribution about the true value θTr. However, the statistical uncertain-
ties on the parameters are biased as shown in the pull distributions in Figures 9.2 and 9.3.

The reason for the miscalculation of the statistical uncertainties in TMinuit is the
following. The sum of the weights does not scale with the total number of events. So
the sum of weights is larger or smaller than N :

N∑
i=1

wi > N or
N∑
i=1

wi < N . (9.3)

Therefore a correction for the statistical uncertainties of the fitted parameters to the
weighted MLE is necessary.

The uncertainties are calculated by taking the square root of the Hesse covariance
matrix elements. However TMinuit first calculates the inverse Hesse covariance matrix
as shown below [9]:

Gmn =
N∑
i=1

wi
1

(f(xi))2
dfi
dθm

dfi
dθn

. (9.4)

Therefore, a correction should be applied to TMinuit’s inverse Hesse covariance ma-
trix. The Hesse covariance matrix is the inverse of G.

The correction term is given by [9]:

Fmn =
N∑
i=1

w2
i

1
(f(xi))2

dfi
dθm

dfi
dθn

. (9.5)

The corrected covariance matrix is given by:

G−1
corrected = G−1FG−1 . (9.6)

In Appendix A the derivation [9] of this result is retraced for a PDF with one parameter
only.
In the case when the weights are equal to one:
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G−1
corrected = G−1 (9.7)

Therefore in the case of the MLE without weights, a correction to the covariance
matrix is not needed.

9.3 Correction factor for the control variable fit
The error correction discussed in the previous section is performed for the control vari-
able v in the example. As the exponential function has only one parameter (τ) the
covariance matrix is a 1×1 matrix.

The form of the PDF is given by:

h(x) = 1
τ · (e− aτ − e− bτ )

e−
x
τ (9.8)

where a and b are the lower and upper limits of the domain of the function.

The F matrix term is given by:

F11 =
N∑
i=1

(wi)2
(

1
h(xi)

∂h(xi; τ)
∂τ

)2

(9.9)

1
h(xi)

∂h(xi; τ)
∂τ

=
(x−a

τ
− 1)e− aτ − (x−b

τ
− 1)e− bτ

τ · (e− aτ − e− bτ )
. (9.10)

By applying the above correction term to the variance of τ we obtain the new Hesse
covariance matrix, which is given by (9.6).

9.4 Closure test results for the control variable after
correction to covariance matrix

The closure tests as disscussed in section 9.1 are performed again with the corrected
uncertainties and the corresponding pull distributions are shown in Figures 9.4 and 9.5.
The results are summarized in Table 9.3.
The mean values of the pull distributions for both the signal and the background for

v are within 2 σ of the expected value. The width (P θ
σ ) of the pull distributions for both

the signal and the background for v are also within 2 σ of the expected value.
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Figure 9.4: The pull distribution for v signal using corrected errors

Figure 9.5: The pull distribution for v background using corrected errors
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Parameter θtr θ̄fit σ̄cor
τsig 80.0 80.0005 ± 0.0080 0.8132 ± 0.0001
τbg 100.0 99.9981 ± 0.0047 0.4777 ± 3.84 ×10−5

Parameter P θ
µ P θ

σ

τsig -0.0099 ± 0.0099 0.9933 ± 0.0070
τbg -0.0114 ± 0.0100 1.0016 ± 0.0070

Table 9.3: θtr is the true value of the parameter θ, θ̄fit the mean of the central value of
the fit parameter, σ̄θcor is the mean of the uncertainty on the central value of
parameter θ (after correction), P θ

µ is the mean value of the pull distribution
for parameter θ and P θ

σ the width of the pull distribution for parameter θ.
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10 Conclusions and Outlook
The aim of this thesis was to explore a statistical technique, namely the sPlot tech-
nique [8], in the context of data analysis for high energy physics. The motivation to
study this technique came from the study of rare decays of B0

s and B0 mesons from the
ATLAS experiment [7] at CERN.

The sPlot technique was applied, as an example application, to a MC pseudo data set.
The data was generated with two variables, discriminating variable and control variable,
and two species, signal and background, with 100 000 events. The discriminating vari-
able consists of a Gaussian signal with a decaying exponential background. The control
variable is modeled by two decaying exponential distributions with different lifetimes,
one for the signal and one for the background.

The objective was to extract the signal and background distributions of the control
variable by employing the sPlot technique using the known PDF form of the discrim-
inating variable. The implementation of the technique was divided into three steps.
Firstly, a Maximum Likelihood Estimation (MLE) was performed for the discriminat-
ing variable. A set of sWeights for each species were calculated in the second step and
lastly the control variable for each of the two species was filled in histogram bins with
corresponding sWeights to obtain the desired distribution.

In order to quantify the agreement between the distributions obtained from the sPlot
technique and the generated MC distributions, weighted MLEs were performed for the
sPlot distributions and the parameters obtained from the MLE were compared with the
parameters of the generated MC distributions. This comparison was not made only
once, but repeated 10 000 times in order to obtain statistically meaningful results. For
each run, this three step cycle of data generation, implementing the sPlot technique and
weighted MLE for the sPlot distributions was executed. This produced 10 000 indepen-
dent results; a sufficiently large statistics to perform closure tests.

It was found in the closure tests that the MLE executed by the TMinuit package in
ROOT for the discriminating variable (during the sWeights calculation) was accurate
and not biased. However, the MLE for the sPlot distributions did not yield accurate
statistical uncertainties on the central value of the parameters. The reason is that the
distribution of the discriminating variable is not weighted but the control variable dis-
tributions obtained by the sPlot technique are. The calculation of the Hesse covariance
matrix elements by TMinuit does not take the weights properly into account. Therefore
a correction to the covariance matrix [9] was applied for the weighted MLEs.
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For comparison, the same example was also studied using the sideband subtraction
technique. In this technique, by applying two cuts, the whole range of the discriminat-
ing variable is divided into signal region and sidebands, such that the sidebands contain
mostly background. The most general case with signal leaking into sidebands was stud-
ied and the problem was solved with an idea to calculate weights according to the species
(section 7.3).

The advantage of the sPlot technique over the sideband subtraction technique is that
it does not need signal region cuts. Therefore it is preferable over the sideband sub-
traction technique. The sPlot technique is also preferred when the data contains more
number of species. Subsequent to this thesis it will be interesting to study the technique
more thoroughly with new variables and different distributions. The sPlot technique
can be used in the data analysis of rare B meson decays. Specifically, it can be used
as a replacement for the sideband subtraction technique in the "Data - Monte Carlo
comparisons" in the reference channel B± → J/ψ K± in order to validate the MC data
set for B0

s → µ+µ− analysis.
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11 Appendix A
In this appendix the derivation of the corrected covariance matrix [9] for the weighted
maximum likelihood estimation is retraced to the most simple case of a PDF with one
parameter only (chapter 9, (equation 9.6)).

Let the variables be divided into two groups x and y, x depending directly on the
parameters ~θ to be estimated and y depending indirectly on x:

P (x, y|θ) = P (x|θ)Q(y|x)with normalization
∫
P (x|θ)dx =

∫
Q(y|x)dy = 1 . (11.1)

The PDF can be written as

f(x, y|θ) = P (x|θ)Q(y|x)e(x, y)∫
P (x|θ)Q(y|x)e(x, y)dxdy (11.2)

with weights w = 1
e
.

The normalization condition and definition of estimator E[.] is given by

∫ ∫
f(x, y; θ)dx dy = 1 , (11.3)

E[g(x)] =
∫
g(x)f(x, y; θ)dx (11.4)

with f(x, y) = PQe∫
PQe

. For simplicity we assume that the PDF has only one parameter

and the likelihood function is given by:

L =
N∏
i

P (xi|θ)Q(yi|xi)e(xi, yi)∫
P (x|θ)Q(y|x)e(x, y)dxdy . (11.5)

The log likelihood is given by:

logL =
∑
i

( 1
ei

logPi
)

(11.6)

with wi = 1
ei
.

57



The variance is given by (section 7.3.2 [9]):

σ2
θ̂

= E [ζ(θ0)2]
E
[
∂ζ(θ)
∂θ

]2 (11.7)

with:

ζ(θ) = 1
N

∂ logL
∂θ

= 1
N

N∑
i=1

1
ei

P
′
i

Pi
(11.8)

and:

∂ζ(θ)
∂θ

= 1
N

N∑
i=1

1
ei

(
P
′′
i

Pi
− (P ′i )2

P 2
i

)
. (11.9)

Calculating the estimation for (11.9) in order to obtain the denominator term in (11.7):

E

[
∂ζ(θ)
∂θ

]
= 1
N

N∑
i=1

(
E

[
1
ei

P
′′
i

Pi

]
− E

[
1
ei

(P ′i )2

P 2
i

])
. (11.10)

As all the terms in the summation are the same we obtain:

E

[
∂ζ(θ)
∂θ

]
=
(
E

[
1
ei

P
′′
i

Pi

]
− E

[
1
ei

(P ′i )2

P 2
i

])
. (11.11)

The first term in the above equation is zero because:

E[ 1
ep
P ′′] = E[ 1

ep

∂2P

∂θ2 ] , (11.12)

E[ 1
ep

∂2P

∂θ2 ] =
∫ P ′′

eP

PQe∫
PQe

=
∫
P ′′Q∫
PQe

, (11.13)

∫
P ′′Q∫
PQe

=
∫ ∂2

∂θ2P (x|θ)Q(y|x)dxdy , (11.14)

∫
P ′′Q∫
PQe

= ∂2

∂θ2

(∫
P (x|θ)Q(y|x)dx

)
, (11.15)

∫
P ′′Q∫
PQe

= ∂2

∂θ2 (1) = 0 . (11.16)

Therefore we obtain:

E

[
∂ζ(θ)
∂θ

]
= −E

[
1
e

(P ′)2

P 2

]
. (11.17)

Similarly, the numerator term in (11.7) can be obtained by estimating (11.10):
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E
[
ζ(θ0)2

]
= 1
N2E

( N∑
i=1

1
ei

P
′
i

Pi

)2 , (11.18)

E
[
ζ(θ0)2

]
= 1
N2E

( N∑
i=1

1
e2
i

P
′
i

Pi

)2

+
N∑

i,j=1

1
eiej

P
′
iP
′
j

PiPj

 . (11.19)

By simplifying we get:

E
[
ζ(θ0)2

]
= 1
N
E

 1
e2

(
P
′

P

)2 . (11.20)

Substituting (11.17) and (11.20) in (11.7), we get:

σ2
θ̂

=

1
N
E

[
1
e2

(
P
′

P

)2
]

E
[

1
e

(P ′ )2

P 2

] . (11.21)

Further the variance can be expressed as:

σ2
θ = D

′
2

ND
′2
1

(11.22)

with:

D
′

2 = E

( P ′
Pe

)2 (11.23)

and:

D
′

1 = E

1
e

(
P
′

P

)2 . (11.24)

Further, by using (11.4) D1
′ and D2

′ can be expressed as:

D1
′ =

∫ P
′2Q
P∫

PeQ
, (11.25)

D2
′ =

∫ P
′2Q
Pe∫
PeQ

. (11.26)

The task now is to find the D′1 and D′2 which should be substituted in (11.22).

Recall that the the log likelihood is given by:
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logL =
∑
i

( 1
ei

logPi
)
. (11.27)

We define:

D̂
′

1 = − ∂2

∂θ2

[
1
N

N∑
i=1

logPi
ei

]
, (11.28)

D̂
′

2 = − ∂2

∂θ2

[
1
N

N∑
i=1

logPi
e2
i

]
. (11.29)

By differentiating (11.28) twice we obtain:

D̂
′

1 = 1
N

N∑
i=1

1
ei

(
P
′
i

Pi

)2

− 1
N

N∑
i=1

1
ei

(
P
′′
i

Pi

)
, (11.30)

E
[
D̂
′

1

]
= E

 1
N

N∑
i=1

1
ei

(
P
′
i

Pi

)2

− 1
N

N∑
i=1

1
ei

(
P
′′
i

Pi

) , (11.31)

E
[
D̂
′

1

]
= 1
N

N∑
i=1

E

 1
ei

(
P
′
i

Pi

)2− 1
N

N∑
i=1

E

[
1
ei

(
P
′′
i

Pi

)]
. (11.32)

The second term in above equation is 0 because of (11.15) and (11.16).
So we obtain:

E
[
D̂
′

1

]
= E

1
e

(
P
′

P

)2 , (11.33)

E
[
D̂
′

1

]
= D

′

1 . (11.34)

Similarly:

E
[
D̂
′

2

]
= D

′

2 . (11.35)

Thus the estimation of D′1 and D′2 given in (11.24) and (11.23) can be found by using
D̂
′
1 and D̂′2. Once D′1 and D′2 is known, the variance is found from (11.22).
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12 Appendix B
The following figures are the pull distributions from the discriminating variable fit.

Figure 12.1: The pull distribution for parameter σ in the discriminating variable fit.
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Figure 12.2: The pull distribution for parameter τ in the discriminating variable fit.

Figure 12.3: The pull distribution for fs in the discriminating variable fit.
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