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Abstract

The utilization of radioactive tracers requires the proper detection of their emitted
gamma radiation. This is limited to energies below 1MeV due to the current detection
techniques. The Cherenkov-Compton camera under construction at the University of
Siegen offers a novel approach to detect gamma photons in the low MeV range. The
photon is reconstructed based on the created Compton electron and the scattered pho-
ton. For a successful reconstruction, a determination of the electron is unavoidable.
These electrons are high energetic.
This thesis presents a first proof of principle of the detection of high-energy electrons
with energies around 1MeV and above using an electron monochromator. An elec-
tron monochromator is calibrated and prepared for measuring electrons emitted by
a Strontium-90 source, which simulates Compton electrons. Furthermore, a Geant4
model is motivated and tuned to validate the experiment.
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1. Introduction

Nowadays, radioactivity plays an important role in various fields, such as medical di-
agnostics or biological research. Here, a commonly used method is the injection of
radioactive tracers, which, depending on the tracers, are absorbed by specific cells.
This allows the investigation of a certain tissue or dynamic processes. These radioac-
tive tracers emit gamma photons, which can then be detected with gamma cameras.
However, current detection and imaging techniques are inefficient for gamma energies
above 1MeV, thereby limiting the use of isotopes that emit gamma radiation above
this energy. One promising idea is the Compton camera, which aims to measure photon
energies in the low MeV range after undergoing a Compton scattering. This concept
requires the precise determination of the resulting Compton electron. This thesis aims
to test the concept of an electron monochromator to investigate high-energy electrons
with energies above 1MeV.
Chapter 2 provides the theoretical background that is necessary in the scope of this
thesis, mainly focusing on the interactions of particles in matter. It also includes a list
of sources, which are used in this work. Afterwards, a brief overview of the simula-
tion toolkit Geant4 is given in Chapter 3. In Chapter 4, the working principle of the
Compton camera is explained, and also the novel approach of the Cherenkov-Compton
camera at the University of Siegen. It is followed by the introduction of the electron
monochromator in Chapter 5. Besides an explanation of the working principle, it also
includes the experimental setup as well as the basic setup for the Geant4 simulations.
The following Chapter 6 is about the theoretical prediction of electron trajectories in-
side the electron monochromator using numerical calculations.
The following chapters are about experimental preparations for the electron monochro-
mator. Chapter 7 addresses the preparations for the electron monochromator exper-
iment. It consists of simulations about the expected energy resolution. It is followed
by the experimental detector calibration for the electron monochromator, described
in Chapter 8. This calibration will be important to resolve the energies of electron
after their separation. This is also required for the investigation of the background in
Chapter 9.
The last few chapters discuss the tuning of the Geant4 simulations using experimental
observations. At first, the Geant4 setup is modified in Chapter 10, before comparing
simulations with experimental data in Chapter 11. Based on these results, the mag-
netic field is investigated more in detail in Chapter 12.
At last, a conclusive summary of the most important results, as well as an outlook on
the next steps, are given in Chapter 13.
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2. Theoretical background

This chapter provides a brief overview of important physical concepts necessary for the
experiments in this thesis.

2.1. Interactions of charged particles with matter

2.1.1. Ionisation

While traversing a material, any charged particle interacts with the material’s atoms,
causing an energy transfer. The atoms will either be excited or ionized. These in-
teractions are stochastic processes; the resulting mean energy loss (normalized by the
material’s density ρ) of these interactions can be described by the Bethe-Bloch equation
[KW20]

−
〈

dE
dx

〉
= K

Z

A

z2

β2

(
1

2
ln

2mec
2β2γ2Tmax

I2
− β2 − δ(βγ)

2
− C(βγ, I)

Z

)
(2.1)

with K = 0.307MeVcm2/mol, which depends on both the incident particle’s (β, γ
and charge number z) and the target material’s (ρ, Z,A and mean excitation energy

I) properties. δ(βγ) is a high-energy correction due to the density effect,
C(βγ, I)

Z
denotes a ’shell correction’ for low energetic particles, while Tmax is the maximum
energy transfer of the particle with mass M onto a shell electron in a single collision
given by [KW20],

Tmax =
2mec

2β2γ2

1 + 2γme

M
+

m2
e

M2

. (2.2)

A scheme of the ionisation energy loss as a function of the particle’s velocity is de-
picted in Figure 2.1.1. The energy loss for velocities below the minimum ionisation at

βγ ≈ 3 − 4 behaves like 1/β2. The proportionality
dE
dx

≈ ln γ above the minimum
leads to a plateau at high energies. If the energy loss is at a minimum, the particle
is called a ’minimum ionizing particle’. This state depends on the particle’s mass and
requires higher kinetic energies for heavier particles. This is represented in Figure 2.1.2.

Unlike hadrons and heavier leptons, the Bethe-Bloch equation in Eq. 2.1 cannot
accurately describe the energy losses due to ionization for electrons and positrons.
On the one hand, bremsstrahlung already becomes important for low energies due to
the low masses of the particles involved. On the other hand, interactions between an
electron and a shell electron lead to additional interference effects, since they can mix
up. Furthermore, the spin configurations also need to be taken into account. [KW20]
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Figure 2.1.1.: Illustration of the ionisation energy loss of charged particles as a function of
velocity [KW20].

Figure 2.1.2.: Mean ionization loss for different particles as a function of the particle momen-
tum [Sau14].

2.1.2. Bremsstrahlung

Bremsstrahlung refers to the emission of photons caused by the interaction of a fast
charged particle with the Coulomb field of a nucleus. The resulting deceleration of the
particle leads to an energy loss in the form of an emitted photon. Figure 2.1.3 shows a
simple scheme of the bremsstrahlung, representing the bremsstrahlung’s process as a
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combination of a Rutherford scattering of a charged particle at a nucleus with atomic
number Z and a photon emission. Here, the electron is assumed to keep its momentum
direction. Introducing the radiation length X0, solely based on the interacting material,
the particle’s remaining energy after a path length x due to bremsstrahlung is given
by [KW20]

E(x) = E0 exp

(
− x

X0

)
. (2.3)

If x = X0, the particle will loose 1/e ≈ 63% of its initial energy E0.
There is an inverse proportionality between the energy loss and the incoming particle
mass mp [KW20]

−dE
dx

∝ Z2 E

m2
p

, (2.4)

so that bremsstrahlung becomes dominant for light particles such as electrons, and for
larger nuclei. The energy Ec, at which radiation losses due to bremsstrahlung are equal
to the energy loss due to ionization losses, is called the ’critical energy’. This energy
can be estimated with

Ec ≈
610MeV

Z + 1.24
(2.5)

for solid materials and liquids, and

Ec ≈
710MeV

Z + 0.92
(2.6)

for gases [KW20]. This approximation only depends on the state of aggregation and
the atomic number Z. If a charged particle traverses aluminum (Z = 13), the critical
energy is E ≈ 43MeV. Above Ec, bremsstrahlung needs to be considered. This work
examines electrons with energies below 2.5MeV that strike light materials such as
scintillators and aluminum; therefore, bremsstrahlung does not contribute significantly,
since the critical energy is not exceeded.

2.1.3. Multiple Coulomb scattering

Besides the deceleration and creation of bremsstrahlung, charged particles also undergo
multiple scattering processes in the Coulomb field of nuclei. The difference is that no
radiation is emitted, but the electron is scattered at a tiny angle θi for each scattering.
Multiple scattering in a row leads to a significant change in the particle’s path. If a
particle undergoes multiple scattering by traversing a material with thickness x, the
distribution of scattering angle is Gaussian-like. The corresponding deviation angle
θms then can be calculated by the ’Highland formula’ [KW20]

θms(x) =
13.6MeV/c

pβ
z
x

X0

(
1 + 0.0038 ln

x

X0

)
. (2.7)
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Figure 2.1.3.: Illustration of bremsstrahlung. A photon is emitted after the interaction of a
charged particle with the Coulomb field of a nucleus with atomic number Z
[KW20].

2.1.4. Cherenkov effect

The Cherenkov effect describes the phenomenon of light emitted after a charged particle
with velocity v = βc traverses a medium with refractive index n faster than the phase
velocity of light in that medium,

v >
c0
n

, (2.8)

where c is the vacuum speed of light. Furthermore, it is required that the size of
the medium is larger than the wavelength of the corresponding Cherenkov radiation
[KW20].
In contrast to low velocities v <

c

n
, where a symmetrical polarization happens, the

particle causes an unsymmetrical polarization of the surrounding atoms along its tra-
jectory (Figure 2.1.4). Those atomic dipoles then superimpose, leading to a non-zero
dipole moment and thus, photon emissions at an angle θCh, given by [KW20]

cos θCh =
1

βn
, (2.9)

where β = v
c

is the normalized velocity. The maximal Cherenkov angle

θmax
Ch =

1

n
(2.10)

is achieved for ultra-relativistic particles and is purely medium-dependent. On the
other side, the lowest possible emission angle θCh = 0◦ ⇐⇒ cos θCh = 1 corresponds to
the Cherenkov photons produced by particles having the minimal velocity

βth =
1

n
. (2.11)

Using the relation with the Lorentz factor γ, this leads to the threshold energy

Eth

m c2
= γth =

1√
1− β2

th

=
1√

1− 1

n2

=
n√

n2 − 1
, (2.12)
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Figure 2.1.4.: Creation of atomic dipoles in a medium with refractive index n by a traversing
charged particle with velocity v. Left: symmetrical arrangement of atomic
dipoles for v <

c0
n

. Right: unsymmetrical arrangement of atomic dipoles for

v >
c0
n

[KW20].

which also only depends on n.

The intensity of the Cherenkov radiation per frequency interval and path length is
given by the Frank-Tamm formula [KW20]

d2E

dωdx
=

z2e2

4πε0c2
ω

(
1 − 1

β2n2(ω)

)
=

z2e2

4πε0c2
ω sin2 θc(ω) . (2.13)

Dividing Eq. 2.13 by the photon energy and converting the frequency into wavelength
leads to the number of produced Cherenkov photons per path per wavelength interval
[KW20]

d2N

dλdx
=

2πz2α

λ2
sin2 θc(λ)

(
1− 1

β2n2(λ)

)
(2.14)

with the fine structure constant α. The majority of the produced Cherenkov photons
are emitted in the UV range (Figure 2.1.5). Cherenkov photons cannot have wave-
lengths below 100 nm− 150 nm due to anomalous dispersion effects, in which n2 < 1

β2

[KW20].

2.2. Photon interactions with matter

2.2.1. Photoelectric effect

The photoelectric effect is the dominant effect for low-energy photons and refers to the
process

γ + atom → (atom)∗ + e− , (2.15)
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Figure 2.1.5.: Cherenkov photon spectrum as a function of the wavelength. The dotted line
marks the lower wavelength limit due to anomalous dispersion [KW20].

in which a photon is completely absorbed by a shell electron. This effect only occurs if
the binding energy EB of the electron is lower than the photon energy Eγ, and results
in an emission of a shell electron with kinetic energy

Te = Eγ − EB (2.16)

and an ionized atom [KW20]. The resulting recoil energy from the electron emission
is absorbed by the atomic nucleus. Although the photoelectric effect can appear in all
electron shells, the majority (about 80%) takes place in the K-shell. This is because
of its close distance to the nucleus [GS08].
If an atom consists of multiple electron shells, the photoelectric effect can further
initiate a secondary process. The hole created in the K shell can be filled by an
electron from the neighboring L shell. In this case, the energy difference results in the
emission of a photon. If the photon energy is high enough, its energy can be transferred
to an electron of the M shell or above, and this electron leaves the shell as an Auger
electron. [GS08]

2.2.2. Compton effect

The Compton effect denotes the scattering of a photon by an electron. One has to
distinguish between coherent and incoherent scattering. Coherent scattering occurs if
the target electron is a shell electron whose binding energy EB is not significantly lower
than the photon energy Eγ. In this case, the photon loses a negligible fraction of its
energy, absorbed by the atomic nucleus, and only changes its direction [KW20]. The
incoherent Compton scattering instead occurs either for free electrons or shell electrons
with EB ≪ Eγ, in which the photon transfers a part of its energy to the electron. A
shell electron will leave the electron shell.
The kinematics of an incoherent Compton effect is depicted in Figure 2.2.1. It can be
assumed as a quasi-elastically scattering process while the electron is at rest. After
the scattering, one obtains a scattered photon with energy E ′

γ, while the energy of the
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electron is E ′
e. Using energy conservation

Eγ +mec
2 = E ′

γ + E ′
e (2.17)

and momentum conservation, the scattered photon’s energy can be calculated by
[KW20]

E ′
γ =

Eγ

1 +
Eγ

mec2
(1− cos θγ)

, (2.18)

or, rearranged for the Compton angle,

cos θγ = 1−mec
2

(
1

E ′
γ

− 1

Eγ

)
(2.19)

with the energy of the incident photon Eγ.

T = Eγ − E ′
γ . (2.20)

Figure 2.2.1.: Kinematics of an incoherent Compton process [KW20].

2.3. Radioactive decays

All nuclei long for being in the lowest energy state possible. If a nucleus can transform
into a lower energy state, it will decay and emit energy as radiation, without requiring
external energy. There are different decay processes possible:

α decay
The α decay denotes the splitting off of an α particle (42He2):

A
ZXN −→ A-4

Z-2YN-2 +
4
2He2 +∆E (2.21)

The emitted alpha particle has a discrete energy spectrum.
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β+ and β− decay
Both β decays are based on the weak force and create an isobaric isotope. While
a β+ decay converts a proton into a neutron, the β− decay does it the other
way around. Furthermore, due to charge conservation and lepton number con-
servation, an electron and an antielectron neutrino are produced in the β− decay
(positron and electron neutrino in the β+ decay, respectively). The resulting
nucleus conversions are

A
ZXN

β−
−→ A

Z+1YN-1 + e− + ν̄e +∆E and (2.22)
A
ZXN

β+

−→ A
Z-1YN+1 + e+ + νe +∆E. (2.23)

β decays are referred to as three-body decays, since the final state consists of three
particles, which will get a fraction of the released energy as kinetic energy. The
beta particles (electron, positron) are therefore emitted in a continuous energy
spectrum.

Electron capture
The electron capture (EC) denotes the process in which a shell electron is cap-
tured by its nucleus. A proton, in combination with that electron, is then con-
verted into a neutron:

A
ZXN + e− −→ A

Z-1YN+1 + νe +∆E. (2.24)

After the replacement of the created hole in the electron shell by an electron from
an outer shell, a photon with a defined energy is emitted. Electron capture is a
process that competes with β+ decay.

γ radiation
After a radioactive decay, the nucleus can be in an excited state. It will emit a γ
photon with a determined energy to enter its ground state.

2.3.1. Used sources

All used sources in the scope of this thesis and their corresponding activity are listed
in Table 2.1. The activity is calculated by

A(∆t) = A0 · 2
−
∆T

T1/2 (2.25)

with half-time T1/2.

Bismuth-207
The isotope 207Bi decays into 207Pb dominantly via electron capture with a
branching ratio BR(EC) = 99.962%. Another decay channel is β+-decay with
BR(EC) = 0.038%. The daughter nucleus is produced in different excited
states, which decay either by emission of a photon or through internal conver-
sion. The decay scheme of 207Bi is shown in Figure 2.3.1. The most dominant
decay channel is the excited state with Jp = 13/2+, which emits a γ with an
energy of 1063.656 keV. Alternatively, it can also create a conversion electron.
In this case, a K-shell conversion electron has an energy of 975.651 keV, or a
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Source Initial activity A0 Date of purchase T1/2 (a) Activity 01.04.2025 (kBq)

Bismuth-207 37 kBq 21.01.2008 31.55 25.4
Caesium-137 370 kBq 01.07.2005 30.13 234.8
Cobalt-60 370 kBq 01.07.2005 5.27 27.5
Sodium-22 40.7MBq 12.03.1998 2.60 29.9

Strontium-90 370 kBq 01.09.2018 28.81 315.8

Table 2.1.: Used sources and their activity. Activity is calculated in full days, initial activities
are taken from [Sie].

1047.795 keV L-shell conversion electron. Further decay modes are the excited
states Jp = 5/2− (lowest state with (BR = 8.9%, decay dominated by the emis-
sion of an 569.698 keV photon) and Jp = 7/2−, which decays in a 1770.228 keV
photon. The most intense decays are listed in Table 2.2. In addition, atomic tran-
sitions can cause the emission of photons in the X-ray range. These transitions
are not included in Table 2.2.

Figure 2.3.1.: Decay scheme of 207Bi [KL11].

Caesium-137
The isotope 137Cs decays into 137Ba exclusively via β−-decay. The beta electrons
have an main energy of 187.1 keV. The daughter nucleus 137Ba is mainly created
in the excited state Jp = 11/2− (BR = 94.7%), which dominantly de-excites
under emission of a 661.657 keV photon. Another de-excitation opportunity is
the creation of conversion electrons, whereby the K-shell conversion electron has
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Type Energy (keV) Intensity (%)

CE K 481.694 1.54
CE L 553.837 0.44
γ 569.698 97.75

CE K 975.651 7.08
CE L 1047.795 1.84
γ 1063.656 74.50
γ 1770.228 6.87

Table 2.2.: Most intense radiation of 207Bi. X-rays are not listed here. Data taken from
[KL11].

an energy of 624.216 keV. The decay scheme of 137Cs is depicted in Figure 2.3.2
and an overview of the most intense radiations of the 137Cs decay can be found
in Table 2.3.

Figure 2.3.2.: Decay scheme of 137Cs [BT07].

Type Energy (keV) Intensity (%)

β− Ē = 187.1 100.00
γ 661.657 85.10

CE K 624.216 7.40

Table 2.3.: Most intense radiation of 137Cs and its daughter nucleaus 137Ba. X-rays are not
listed here. Data taken from [BT07].

Cobalt-60

The isotope 60Co decays into 60Ni exclusively via β−-decay. The beta electrons
have a main energy of 96.41 keV. The daughter nucleus 60Ni is mainly created
in the excited state Jp = 4+ (BR = 99.88%). The most dominant decay of
the Jp = 4+ state is the emission of a 1173.217 keV gamma and leads to the
Jp = 2+ state. In this excited state, a 1332.492 keV gamma is mainly emitted.
Afterwards, 60Ni is in the ground state. The decay scheme of 137Cs is depicted
in Figure 2.3.3 and an overview of the most intense radiations of the 137Cs decay
can be found in Table 2.4.

11



Figure 2.3.3.: Decay scheme of 60Co [BT13].

Type Energy (keV) Intensity (%)

β− Ē = 96.41 100.00
γ 1173.217 99.85
γ 1332.492 99.98

Table 2.4.: Important radiation of 60Co. Data taken from [BT13].

Sodium-22

The isotope 22Na decays into the stable isotope 22Ne mainly via β+-decay with
a branching ratio BR = 89.96%. The mean energy of the resulting positrons
is 216.012 keV. Each positron leads to the production of two photons with an
energy of 511 keV each due to electron-positron annihilation. The other 10.04%
decays via electron capture. In 99.94% of all 22Na decays, the daughter isotope
22Ne is excited and de-excites to the ground state by emitting a 1274.537 keV
photon. The decay scheme of 22Na is depicted in Figure 2.3.4 and the important
decays are listed in Table 2.5.

Strontium-90

The isotope 90Sr is a beta emitter and decays into 90Y exclusively via β−-decay.
The beta electrons are distributed up to 545.9 keV and have a main energy of
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Figure 2.3.4.: Decay scheme of 22Na [Sha15].

Type Energy (keV) Intensity (%)

β+ Ē = 216.4 89.96
γ 511 179.91
γ 1274.54 99.94

Table 2.5.: Important radiation of 22Na. Data taken from [Sha15].

96.41 keV. The daughter nucleus 90Y itself is also a beta emitter and decays to
the stable isotope 90Zr via β−-decay. The main of the beta particles of 90Y have a
main energy of 932.4 keV, but can reach above 2MeV. The decay scheme of 90Sr
is depicted in Figure 2.3.5 and an the important decays of 90Sr and its daughter
nucleaus 90Y are listed Table 2.6.

Figure 2.3.5.: Decay scheme of 90Sr and 90Y [BM20].

Type Energy (keV) Intensity (%)

β− Ē = 195.7 100.00
β− Ē = 932.3 100.00

Table 2.6.: Important radiation of 90Sr and its daughter isotope 90Y. Data taken from [BM20].
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3. Geant4
This chapter gives a short overview of the simulation program Geant4 in general, which
is used for the detector simulations. All given information is taken from the official
Geant4 website [Gea] and the ‘Book For Application Developers’ [Gea25] (Geant4 man-
ual). No explicit references are provided below, except for other sources.
Geant4 is a free, powerful simulation toolkit, based on C++, to simulate interactions
of particles and radiation with matter. Formerly developed as the successor of Geant3
for high-energy physics experiments at CERN, it is nowadays an indispensable tool
in detector simulations and is used in different fields, for example in nuclear physics
or in medical physics for the investigation of medical applications. Geant4 provides a
variety of abstract classes that can be overridden to create customized simulation files
for different complexities. A simulation is started by executing the main file of the
simulation.
The primary particles, initialized by the particle gun, are called events. Geant4 con-
siders one particle after another, shown in Figure 3.0.1. A new event is only initialized
after all previous particles, including secondary particles, have been deleted. A particle
is deleted if its kinetic energy falls below the defined cut energy. The trajectory of a
particle is updated in discrete steps, which connect two points, where either the parti-
cle undergoes a physical process or hits a volume boundary. The first point of a step
(pre-step point) contains the particle’s quantities before the physical interaction, while
the end point (post-step point) contains the updated information. The production of
secondary particles is provided in the post-step point. The totality of all events is
called a run, which corresponds to one simulation.

Figure 3.0.1.: Scheme of the event algorithm. Events are generated one after another if all
particles, including secondary particles, are deleted [PR16].

The structure of Geant4 is object-oriented; hence, a simulation typically consists of
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multiple files, whose compilation is organized by CMake. Besides the main file, which
is the executable file of a simulation, each simulation must include the following four
classes:

G4RunManager
The G4RunManager class defines the run manager, which coordinates the over-
all simulation. To do so, it requires information about the number and type of
produced particles. All other managers exist only after the run manager is in-
stantiated; hence, the explicit instantiation of the run manager in the main file is
the very first action of each simulation. The run manager further initializes the
detector geometry and the physics list.

Action initilisation
The ActionInitialization class ensures smooth simulation runs. This class is in
charge of the particle gun, which produces the initial particles. It also instantiates
all kinds of action managers, such as ’EventManager’ and ’RunManager’.

Construction class
The Construction class is a customized class that contains information about the
geometry of the setup. Each single volume is defined by a geometrical shape and
a material. The material itself has to be built up, and its most important ability
is the density, since the density influences the interaction probability with par-
ticles. For optical interactions, such as Cherenkov radiation, optical properties
have to be defined specifically. On the other hand, the Construction class in-
cludes a function called ’ConstructSDandField()’, in which selected volumes can
be defined as a sensitive detector for investigations and particle tracking. This
function also provides a declaration of magnetic fields.

PhysicsList class
The customized PhysicsList class provides the list of physical interactions. Only
interactions, whether hadronic or electromagnetic interactions that are listed in
this class are taken into account. The default list ’EM Opt0’ already provides mul-
tiple electromagnetic interactions. It is also possible to create your own physics
lists; however, there are many free parameters that one has to specify: interac-
tion type, particle type, energy range etc. In case of optical interactions, such
as Cherenkov radiation, one has to ensure that the corresponding volume has
defined optical properties.
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4. Compton camera

Radioactive isotopes used for clinical treatments emit gamma radiation in the range
from hundreds of keV up to a few MeV. For energies below ≈ 600 keV, photons can
be resolved using single-photon emission computed tomography (SPECT) or positron
emission tomography (PET). SPECT is a collimator-based technique, using scintillators
to create scintillation light, which is then registered by multiple photo detectors, i.e.
PMTs. The mechanical collimators are necessary to ensure that only photons parallel to
the openings (within an angular spread) can strike the scintillator. Its spatial resolution
is limited by the photon energy, since high-energy photons traverse the collimator
material easily and create additional scintillation light. On the other hand, the photons
in PET have a defined energy of 511 keV due to the annihilation process, initiated
by administered positron emitters. New techniques were therefore required to use
isotopes with gamma energies above 600 keV. The concept of a Compton camera was
proposed in 1974 [TNE74] to detect γ radiation regarding medical diagnosis. Nowadays,
Compton cameras are used in various fields, not only in medical imaging, but also in
astrophysics and nuclear safety.

4.1. Working principle

As the name suggests, the working principle of a Compton camera is based on the
Compton effect (see section 2.2.2). Its purpose is the reconstruction of the origin of
the incoming photon by coincidental measurements. The basic idea, shown in Figure
4.1.1, is as follows: The Compton camera consists of two layers: one scattering layer
and one absorption layer. If an incident γ travels to the scattering layer, it can undergo
Compton scattering. The interaction probability depends on the thickness of the scat-
tering layer. Afterwards, the scattered photon is absorbed in the absorption layer. The
spatial coordinates of the interaction points are determined for both at the scattering
(xs, ys and zs) and the absorption layer (xa, ya and za), as well as the energy E ′

γ of
the absorbed photon. These interaction locations are important since they provide the
axis that encloses the Compton angle θ with the trajectory of the incoming gamma.
As a result, one obtains the Compton ellipse, which defines all the possible locations of
the radiation source that emitted the initial photon. The coincidental detection at the
scattering layer and the absorption layer also works as a natural background rejection.
An input is automatically assigned as a background event if a hit is only registered in
one layer.
In case of knowing Eγ, one can calculate the Compton angle θγ according to equa-
tion 2.19. If the energy of the incident γ is unknown, its energy can be calculated
considering the recoil energy

T = Eγ − E ′
γ (4.1)
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which corresponds to the total kinetic energy of the electron, leading to

cos θγ = 1−mec
2

(
1

E ′
γ

− 1

Eγ

)
(4.2)

= 1− me c
2 T

E ′
γ(E

′
γ + T )

(4.3)

after substituting in 2.19. This allows, for example, dose monitoring in proton therapy,
which causes photon emission of different energies.

(x_s, y_s, z_s)

(x_a, y_a, z_a)

Figure 4.1.1.: Basic theoretical setup of a Compton camera. Edited version from [Lar25].

Each reconstructed photon creates a Compton ellipse in the image plane. This
limits the source position on the ellipse’s contour. The detection of many photons
leads to overlapping ellipses (Figure 4.1.2). In the optimal case, all ellipses intersect
at the same point, shown on the left side. Since all photons originate from the same
point, the intersection point, represented as a red circle, can be identified as the source
location. However, in reality, each reconstruction has its uncertainties. Suppose the
position detection in the scattering layer and the absorption layer has a reconstruction
uncertainty. This causes a displacement, and not all Compton ellipses will intersect at
one point (right side of Figure 4.1.2). A similar problem occurs if the energies of the
outgoing particles have a large measurement uncertainty.

4.2. Cherenkov-Compton camera

In the last couple of decades, several Compton camera variations were developed. Most
of them only focus on the photon part, neglecting the Compton electron, limiting the
usage to known monoenergetic sources. The other Compton cameras, denoted as ’Elec-
tron Tracking Compton camera’ (ECCT), pursue the extraction of additional informa-
tion about the Compton electron. The downside of those current systems is the thin
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Figure 4.1.2.: Illustration of a source reconstruction using Compton overlapping Compton
ellipses. The point with the most intersections is determined as the source po-
sition. Left: Idealistic reconstruction for a point source and a monoenergetic
gamma beam. All ellipses intersect at one point (red circle). Right: Multiple
ellipses are reconstructed, but not intersecting at one point, but slightly mis-
placed. The uncertainty for the source localisation increases.

detector layers. The developed semiconductor-based in [Yos+17] consists of an absorp-
tion layer of 8 scintillator array of Gadolinium Aluminium Gallium Garnet (GAGG),
each with dimensions of 3 × 10 × 10mm3. Although good in spatial resolution, they
only allow the detection of gamma rays between 100 keV and 300 keV. Photons with
higher energies will traverse the scintillator without depositing all of their energy inside
the detector.
The Cherenkov-Compton camera, proposed in [PBW12], represents a novel approach
to investigating Compton electrons using transparent materials for the scattering layer.
After its creation, the Compton electron’s energy is high enough to produce Cherenkov
photons in the scattering layer. The electron energy can then be reconstructed by
detecting the number of produced Cherenkov photons, while information about the
momentum direction can be extracted from the Cherenkov cones themself. Studies
in [Bay20] simulated Compton electrons up to 2.3MeV using a 90Sr source. Mea-
surements showed that Cherenkov photons are produced in transparent materials, like
polymethyl methacrylate (PMMA). Due to the wavelength of Cherenkov photons, the
PMMA needs to be UV-transparent. Cherenkov photons were successfully detected by
coincidence measurements using an 8× 8 silicon photomultiplier (SiPM) array.
For the Cherenkov-Compton camera, the desired scattering layer consists of a UV-
transparent PMMA (refractive index n = 1.49), coupled to a SiPM matrix. Since
the energy range is designated in the low MeV range, the electrons can be considered
ultra-high relativistic with velocities β ≈ 1, so that the Cherenkov photons are emitted
under an angle of 47.8◦. For the absorption layer, a similar design of existing Compton
cameras is considered, based on a combination of scintillator crystals and SiPMs.
Exploiting the Cherenkov effect allows the determination of Compton electrons above
1MeV, and hence, the reconstruction of incoming photons in the low MeV region.
However, this faces some challenges. Since the electrons undergo multiple scattering in
the PMMA, each Compton electron produces multiple overlayed Cherenkov cones with
slight offsets from each other. Only the first created Cherenkov cone after reaching the
scattering layer allows the extraction of momentum information, but all photons hit
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the SiPM with time differences in the range of ps, which means that the Cherenkov
cones can no longer be distinguished based on the detection times. This challenge is
currently being investigated using AI, which computes the initial Cherenkov cone using
the spatial distribution of the Cherenkov photons. Another issue is the assignment of
the detected number of Cherenkov photons to the corresponding energy. A detection
of all created photons is impossible, because of the photon detection efficiency of detec-
tors, but also their structure. A SiPM matrix allows a spatial resolution, but includes
dead spaces between each single SiPM. This effect can be compensated for if the ex-
pected amount of detected photons is known. Therefore, an investigation of the mean
number of Cherenkov photons produced for different electron energies inside PMMA
is necessary.
All in all, the Cherenkov effect offers a promising way to improve the concept of the
Compton camera and extend its scope of application in the MeV range.
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5. Electron monochromator

As already mentioned, the novel approach of the Cherenkov Compton camera involves
the Compton electrons created in the scattering layer. This requires a detailed investi-
gation of such electrons. The electron monochromator refers to an application in which
emitted electrons are filtered by their energies, resulting in a ’monochromatic’ electron
beam with a narrow energy width.
Electron monochromator applications play a crucial part in creating low-energy elec-
trons for mass spectroscopy, see [Lar+96]. In contrast to [Lar+96], our aim is the
generation of a monochromatic electron beam with energies between hundreds keV
to a few MeV, like in [Arf+15]. This beam will be used to validate Geant4 simula-
tions regarding the production of Cherenkov photons by Compton electrons within the
scattering layer of the Cherenkov Compton camera.

5.1. Working principle of an electron
monochromator

The principle of the electron monochromator can be seen in Figure 5.1.1. The emitted
electrons of a 90Sr source traverse a magnetic field, causing a bending. Electrons with
a specific energy will exit the electron collimator, depending on the applied field. This
resulting monochromatic electron beam can then be used for spectroscopy experiments
or the production of Cherenkov radiation.

5.2. Experimental setup of the electron
monochromator

The laboratory electron monochromator experiment consists of a customized vacuum
chamber (Figure 5.2.1) made of aluminum. The chamber can be divided into three
main areas:

Source chamber
At first, there is the source chamber. It is the biggest chamber part with a vol-
ume of 300mm × 100mm × 100mm and contains the source holder, shown in
Figure 5.2.2. The source is placed on the sledge on top of the holder. A 200mm
long motorized LTM80P linear stage, manufacturized by OWIS, forms the basis
of the holder, allowing a translational source placement along the y-axis with a
positioning error up to 25 µm per 100mm and a bidirectional repeatability of less
than 15 µm [OWI20]. All parts of the source holder are mechanically connected
to the linear stage, ensuring linear movement. A DMT65 rotary stage provides
the rotational alignment with a repeatability of 0.02◦ [OWI22]. Above the rotary
stage, a plate is fixed, on which a sledge with the radioactive source is placed.
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Figure 5.1.1.: General scheme of an electron monochromator. Left: general principle of an
electron monochromator. Electrons will be separated while traversing a ho-
mogeneous magnetic field. Right: Electrons are fanned out inside due to the
magnetic field.

The pivot point, which is crucial for the angular orientation of the source, is lo-
cated inside the magnet chamber at the beginning of the homogeneous magnetic
field section by using two bars. This is necessary to minimize the uncertainty in
determining the source position. A rectangular Mu metal tube (5.2mm height,
13.9mm width, 86mm length) is fixed on top to shield the electrons from inho-
mogeneous fields.

Magnet chamber
The source chamber is followed by the magnet chamber, in which the path of
the electrons will be bent. A surrounding dipole electromagnet, made of an iron
yoke and two copper coils, 234 windings each, provides a homogeneous magnetic
field of 6 × 6 cm2 along the z-axis [Koo23]. Detailed studies about the behavior
of the standing-alone magnet, for example, the magnetic field profile for the
stand-alone magnet, can be found in [Koo23]. A detailed investigation about the
magnetic field inside the vacuum chamber will be discussed in the chapters 11
and 12. Multiple fans are used for cooling down the magnet, while the magnet’s
temperature is constantly monitored with an attached PT100 temperature sensor
to prevent overheating. A permalloy is placed behind the homogeneous part to
shield electrons from inhomogeneous fields.

Collimator chamber and detector
At the end, there is the collimator chamber, housing the used collimator. The
collimator has a total length of 22mm and can be opened up to 5.5mm. It con-
sists of 3 different layers (PVC, aluminum, and lead) to stop not only any stray
or scattered electrons, but the lead layer also shields against the produced γ radi-
ation in the PVC or aluminum by bremsstrahlung, caused by electrons. The exit
of the collimator chamber is open. Depending on the respective measurement,
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1

3

2

Figure 5.2.1.: Experimental setup (top view), consisting of three connected parts. Part 1:
source chamber; contains the source holder with the source. Part 2: magnet
chamber, surrounded by the electromagnet (yellow); emitted electrons will bend
here. Length: 170mm. Part 3: collimator chamber, containing collimator. The
detector (here: BC-408 scintillator and PMT) is attached to the collimator
chamber.

Figure 5.2.2.: Source holder, positioned via two stepping motors, inside the source chamber.

either an additional detector chamber part has to be connected or the chamber
is closed by a scintillator material.

Additional information, especially about the vacuum chamber and the magnet’s char-
acterization, can be found in [Koo23].
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5.3. Implementation in Geant4

The basic setup of our electron monochromator in Geant4 can be seen in Figure 5.3.1.
The particle gun (red circle) is defined as a point-like electron source and is attached to
Mu metal, whose position and angle are variable along the y-axis. After leaving a Mu
metal, the electrons are bent in a 6 cm long magnetic field. Afterwards, a collimator
selects the desired electrons. The outgoing electrons will produce Cherenkov radiation
within a PMMA layer. Resulting photons are detected by several SiPM arrays behind
the PMMA. The entire simulation environment is filled with an air mixture, based on
a 7:3 carbon-oxygen mixture.
This implementation serves two purposes. The first goal is to study the effect of the
remaining gas inside the chamber to set mandatory measurement conditions for the ex-
perimental setup. The second aim is the investigation of the electron energy resolution
after the collimator at the PMMA, which will then be compared with experimental
data.

Figure 5.3.1.: Geant4 setup for the electron monochromator. Produced electrons from a sim-
ulated 90Sr source (red circle on the left) are selected by a combination of a
homogeneous magnetic field and a collimator. The outgoing particles enter the
PMMA to produce Cherenkov radiation, represented as white lines, which are
detected by SiPM arrays. The red line indicates an electron trajectory.
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6. Numerical calculations

The electron trajectories mainly depend on the applied magnetic field and their ener-
gies, causing a variable source position. Only those electrons that traverse through the
collimator in parallel and arrive at the detector perpendicularly are the ones of inter-
est, while all the other electrons reduce the energy resolution. Therefore, to ensure a
perpendicular arrival of electrons at the detector, numerical calculations are required
to determine the source position and angular direction for a given electron energy and
applied field.

Although Geant4 is capable of determining the respective source position during
simulations, this is not optimal and requires lots of computational resources.

6.1. Numerical calculation for source position

Calculating the source position is a crucial step in making accurate measurements. For
this, a C++ script is written, which iteratively calculates the electron trajectory for a
given magnetic field and electron energy by solving the Newtonian equation of motion

F⃗ = ˙⃗p , (6.1)

whereby F⃗ denotes the total external force on the electron and ˙⃗p the electron’s temporal
momentum change. The geometry is the same as for the Geant4 simulations.
This numerical calculation takes the following assumptions into account:

• Electrons with the desired energy will traverse right through the collimator center
and hit the PMMA perpendicularly.

• The source is point-like and emits electrons only in one direction, meaning that
the opening of the collimated source is infinitesimally small. This implies that
for each setting, only one trajectory is computed.

Since the only considered external force is the Lorentz force F⃗L within the magnetic
field section, it is

F⃗ =

{
0 outside magnetic field area,

F⃗L = q ·
(
v⃗ × B⃗

)
inside magnetic field area.

(6.2)

The particles are emitted in the xy plane, while the magnetic field is aligned to the
negative z-axis. The origin of the coordinate system is placed in the center of the
magnetic field.

The algorithm is time-based, which means each iteration step i corresponds to a time
step dt. This iteration time is set to 1× 10−15 s, corresponding to a travel distance of
roughly tens of micrometers per iteration. During each iteration, the particle moves
by a distance d⃗r = (dx, dy, dz).
Each iteration consists of the following steps:
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1. calculate the particle’s acceleration a⃗i by solving equation 6.1

2. determine new velocity vector: v⃗i = v⃗i-1 + a⃗i · dt

3. calculate traveled distance: d⃗ri = v⃗i · dt

4. calculate new position: r⃗i = r⃗i-1 + d⃗ri

5. calculate bending angle φi = arctan

(
dy
dx

)
At the beginning of the calculation, the electron is located right in the center of the
collimator at position r⃗0, and its momentum direction is set along the negative x-axis.
The corresponding velocity’s absolute value is calculated via special relativity based
on the electron’s kinetic energy Ekin = (γ − 1)mec

2 by

v0 =

√
1− 1

γ2
· c =

√√√√√1− 1(
Ekin

me · c2
+ 1

)2 · c . (6.3)

The final source position is defined by the length of the small mu metal, since it lies be-
tween the start of the homogeneous field and the source. There is no fixed x-coordinate
for the source, due to the angle-dependency of the trajectory.
Since this calculation procedure solves the general Newtonian equation without making
any assumptions about the applied magnetic field, a modification for inhomogeneous
fields is possible. It is also easily adjustable in terms of geometrical changes, such as
changes of the first Mu metal. However, these calculations only predict the source posi-
tion for a perfect monochromatic beam, neglecting angular distributions and stochastic
physical interactions. Therefore, some deviations between the numerical calculations
and simulations are to be expected; however, the resulting positions provide a suitable
starting point for the investigations.

6.2. Source position calculation and verification

Figure 6.2.1 illustrates the resulting trajectories for electrons between 0.8MeV and
2.2MeV in a 40mT field to hit the PMMA perpendicularly. As expected, lower ener-
gies lead to larger angles. Bending only occurs inside the magnetic field area. Electrons
with energies of 0.8MeV and below will bend too much and hit the chamber. These
electrons need a lower applied magnetic field. Furthermore, high-energy electron tra-
jectories are much closer together than low-energy electrons. The results for 40mT are
summarized in Table 6.1. For a first check, the velocity’s absolute value |v⃗0| is com-
pared with the resulting velocity after the calculation |v⃗end|. The absolute value can
increase during an iteration, and the bigger the iteration time, the greater the deviation
from |v⃗0|, and the less precise the calculation. All deviations are below 0.1%, confirm-
ing that the chosen iteration time is adequate. The x and y positions correspond to
the source coordinates in the Geant4 coordinates, where the origin is defined as the
center of the magnetic field, and φ is the bending angle to the x-axis. The coordinate
x depends on the angle φ, and thus can vary.
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Figure 6.2.1.: Electron trajectories for 40mT homogeneous field.

Energy (MeV) |v⃗0| (×108m
s
) |v⃗end| (×108m

s
) xpos (mm) ypos (mm) Angle φ (◦)

0.8 2.761 2.761 -162.50 -97.17 36.58
1.0 2.821 2.821 -172.32 -78.79 30.40
1.2 2.861 2.861 -178.12 -65.64 26.14
1.4 2.889 2.889 -181.98 -55.68 23.00
1.6 2.909 2.909 -184.48 -47.85 20.57
1.8 2.924 2.924 -186.37 -41.51 18.62
2.0 2.935 2.935 -187.78 -36.27 17.02
2.2 2.944 2.944 -188.86 -31.85 15.68

Table 6.1.: Numerical results for dt = 1 × 10−15 s for 40mT homogeneous magnetic field for
the starting position and angular orientation. The total difference between the
final calculated velocity |v⃗end| and the initial velocity |v⃗0| is less than 0.1% and
validates the step size dt. The origin of the coordinate system for the calculated
positions is set to the center of the magnetic field. The x position xpos is the
position of the source along the x-axis. This position depends on the angle φ.

One can validate these results by using them in the simulations. While the parti-
cle gun’s location is defined by the coordinates (no movement in z direction, meaning
z=0), the angle φ is required for the angular alignment of the first Mu metal as well
as the main direction for the emitted electrons. To minimize electron interactions with
surrounding gas molecules, the vacuum quality is maximized (low pressure). These
settings replicate the numerical calculations, as all physical effects except for the bend-
ing within the magnetic field region are neglected. The resulting trajectory for a main
energy of 1.4MeV is depicted in Figure 6.2.2. The electrons pass the 0.1mm wide
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collimator opening, verifying the correctness of the numerical calculations.

Figure 6.2.2.: Trajectory (red line) for a 1.4MeV electron beam in Geant4, using the calculated
source position. The electron passes through the 1mm collimator opening and
creates Cherenkov photons (grey lines).

6.3. Estimation for energy resolution

Electrons with different energies bend differently, causing an energy spread after pass-
ing the magnetic field, as shown in Figure 6.3.1. As long as the used source does not
provide monoenergetic particles, an energy spread is unavoidable. Low-energy electrons
will bend more than higher-energy ones since they are affected longer in the magnetic
field region.

The numerical script cannot only determine the source positions but also numerically
estimate the energy spread for an ideal monoenergetic pencil beam by starting at the
calculated positions. Since the numerical calculations are based on time iteration,
adding a minus sign will reverse the travel direction. The electron spread will then
depend on the collimator opening and the applied magnetic field.
Table 6.2 lists the energy limits for 40mT. The considered energy range is Emain ±
0.4MeV with energy steps of 1 keV. The resulting energy spread after passing the
collimator opening is calculated by taking the relative error

σE =
max(|Emain − Elimit|)

Emain
. (6.4)

Elimit denotes either Emin or Emax, depending on the maximum absolute difference to
Emain. The calculated energy spread for a 5mm collimator lies below 10%. Increasing
the magnetic field yields a better resolution. Pivot tables about the energy resolution
for different collimator apertures can be found in Appendix A.1.

Note: The energy distributions given here merely estimate the absolute energy dif-
ference between the desired (main) electrons and the energy of those electrons that
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Figure 6.3.1.: Visualization of the electron selection. The electrons are fanned out in the
magnetic field. (blue). The collimator (green) limits the electrons that can pass
to the detector/PMMA.

Emain (MeV) Emin (MeV) Emax (MeV) σE (%)

0.8 0.766 0.837 4.6
1.0 0.951 1.053 5.3
1.2 1.135 1.272 6.0
1.4 1.316 1.493 6.6
1.6 1.496 1.717 7.3
1.8 1.674 1.943 7.9
2.0 1.850 2.172 8.6
2.2 2.024 2.404 9.3

Table 6.2.: Energy spread for pencil-like electron beam for 5mm collimator opening and
40mT.

still pass through the collimator. These estimates are calculated differently from the
Geant4 energy resolutions in the following chapters (e.g. Chapter7), in which a Gaus-
sian distribution is used.
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7. Quantitative parameter
estimation using Geant4

A series of parameter studies is performed in order to evaluate the distribution of the
electron energies after passing the collimator. The big benefit of using Geant4, com-
pared to classic numerical calculations, is the inclusion of several physical interactions,
such as particle interactions with matter. Using Geant4 is a proper way to simulate
and verify the physical behavior. For the first studies about the quantitative behavior
of the electron monochromator, the following three parameters are investigated: vac-
uum quality, collimator aperture, and the applied magnetic field. All primary electrons
follow a 90Sr spectrum distribution, an example is shown in Figure 7.0.1. The source
position in each simulation is set in that way so that electrons with an energy of 1.4MeV
will ideally pass through the collimator center and hit the PMMA perpendicularly. The
vacuum quality is fixed on a temperature T = 288K and pressure P = 10mbar, except
for the simulations in section 7.1. Furthermore, unless otherwise specified (Chapter
7.3), a homogeneous magnetic field of 40 mT is assumed in all simulations. Since a
collimated source is used, there are some angular restrictions for the electron emission.
Electrons with an emission angle outside the defined range are rejected.
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Figure 7.0.1.: Example of an energy distribution of primary electrons in Geant4 simulations.
The distribution follows a 90Sr beta spectrum.
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7.1. Vacuum quality

The first simulation series is about the effect of the vacuum quality by changing the
pressure. Geant4 determines all material properties based on the density; therefore,
the density ρ has to be determined as a function of the pressure P and temperature T .
Its relation can be derived by using the ideal gas equation

PV = nRT , (7.1)

with the universal gas constant R, volume V and amount of substance n. n can be
expressed as a ratio of the overall mass of the vacuum gas m and the molar mass Mmol,
which can be rewritten in terms of the density

n =
m

Mmol
=

ρV

Mmol
. (7.2)

After inserting equation 7.2 in 7.1 and solving for ρ, one obtains the following relation

ρ (P, T ) =
PMmol

RT
. (7.3)

In all simulations, the temperature was fixed to 288K, and for the vacuum gas, the
molar mass of dry air at sea level, Mmol = 28.96 g

mol
, was used. The collimator opening

is set to 3mm.
Figure 7.1.1 presents the energy distribution of electrons after passing the collimator
for different vacuum pressures for no angular spread. All diagrams show a Gaussian-
like distributed energy spectrum, whose width reduces for lower pressures, meaning a
better vacuum quality. Additionally, the energy peak shifts to lower energies for higher
pressures due to the resulting increase in the vacuum density. More gas molecules cause
more interactions with electrons and hence more energy transfer from the electrons to
molecules, which must be prevented. Even at 20mbar, the electrons loose around
100 keV, while for 10mbar, which currently is the limit for the experimental setup, the
peak energy differs by 5 keV from the desired energy, and the energy resolution within
the 1σ region σE

E
is determined to be 4.3%. Improving the pressure to 1 µbar can push

the resolution even below 3%, but this is currently not practicable in the experimental
setup. Therefore, 10mbar is used for the following simulations.

In the simulations above, a pencil-like beam is assumed, but since the source emits
beta particles isotropically, there will be angular deviations. After adding an angular
spread of ±10◦, the electron distribution at the PMMA significantly broadens for all
settings (Figure 7.1.2). The source now does not emit a pencil-like beam anymore.
The best obtained resolution is σE = 19.8%. Besides the reduction of the energy
resolution, a significant energy shift of more than 100 keV can also be observed. This
can be explained by the source’s emission spectrum, where electrons are emitted at
lower energies more likely than electrons above 1.5MeV. This is due to many electrons
at too large or too small angles, respectively. The 5.2mm × 13.9mm cross section of
the 115mm long mu metal allows a maximum angular spread

∆φ = arctan

√
(5.2/2)2 + (13.9/2)2

115
= 3.7◦. (7.4)

at the corner of the mu metal. Since the mu metal is included in the simulation, the
angular spread of the electrons that can enter the magnetic field is the calculated spread
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Figure 7.1.1.: Energy distribution of electrons hitting the PMMA for different pressures after
passing 3mm collimator opening. From left to right: first row: 50mbar and
20mbar; second row: 10mbar and 1 µbar. Without angular distribution.

above. Applying this spread in the simulations ensures that all momentum directions
for the electrons, which can enter the magnetic field region, are covered, assuming that
the source is placed centrically at the mu metal’s tube opening. Shortening the mu
metal length increases the angular spread. If the mu metal above is cut to a length
of 86m, the maximal angular dispersion is 9.8◦ An overview of all energy resolutions,
obtained after a Gaussian fit, is listed in Table 7.1. This shows that, for a large angular
spread, the contribution from the vacuum is small.

1 µbar 10mbar 20mbar 50mbar

Without angular spread 2.4 4.3 7.0 9.6
With angular spread 19.7 19.8 20.8 21.1

Table 7.1.: Energy resolutions in % for different vacuum quality. The collimator opening is
3mm and the field is 40mT. The energy resolution refers to the 1σ region.

7.2. Collimator opening

Another geometry parameter is the collimator opening. For this, simulations are done
for openings of 1, 3, and 5mm at 10mbar. The collimator itself is not round. There-
fore, the values above correspond only to the y-axis, while the height remains the same
(32mm).
The resulting energy distributions for all three conditions above, including a 10◦ an-
gular spread, are shown in Figure 7.2.1. The energy resolution improves inversely
proportional to the collimator opening, while the number of hits is proportional to
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Figure 7.1.2.: Energy distribution of electrons hitting the PMMA for different pressures after
passing 3mm collimator opening, including an angular spread.. From left to
right: first row: 50mbar and 20mbar; second row: 10mbar and 1 µbar.

the opening. Similar to the vacuum quality, a significant energy shift can be further
observed. The overall fit results are listed in Table 7.2. The best energy resolution in
these simulations, including an angular spread, is 18.5% for the 1mm opening. Reduc-
ing the opening even further might improve the energy resolution. The angular spread
dominates the energy spread, similar to the vacuum quality.

1mm 3mm 5mm

Without angular spread 3.1 4.3 5.7
With angular spread 18.5 19.8 21.1

Table 7.2.: Energy resolutions in % for different collimator openings. The pressure is fixed on
10mbar and the magnetic field is 40mT. The energy resolution refers to the 1σ
region.

7.3. Magnetic field

The last examined parameter is the magnetic field strength, tested with a 40 and
60mT field, whose energy distributions at the PMMA are depicted in Figure 7.3.1. A
stronger magnetic field leads to a smaller energy spread. Additionally, the 60mT field
counteracts the additional energy spread more efficiently than the 40mT field, which
can be seen in the second row. However, the influence of the angular spread is too
much to create a monoenergetic-like electron beam with the current fields. The energy
resolutions are listed in Table 7.3. The energy resolution for a 60mT applied magnetic
field is 14.9%.
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Electron energy at PMMA

Figure 7.2.1.: Energy distribution of electrons hitting the PMMA for different collimators,
including an angular spread. From left to right: first row: 5mm and 1mm;
second row: 3mm and 3mm without angular spread.
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Figure 7.3.1.: Energy distribution of electrons hitting the PMMA for magnetic fields. From
left to right: first row without angular spread: 40mT and 60mT. Second row
with 10◦ angular spread: 40mT and 60mT.

7.4. Conclusion of the Geant4 simulations

The simulations above point out that a low vacuum of 10mbar is sufficient for the elec-
tron monochromator to prevent a significant energy loss due to electron interactions
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40mT 60mT

Without angular spread 4.3 2.8
With angular spread 20.2 14.9

Table 7.3.: Energy resolutions in % for different magnetic fields. The collimator opening is
3mm and the field is 40mT. The energy resolution refers to the 1σ region.

with the gas molecules. As expected, the energy selection is optimal for a magnetic
field as high as possible. While keeping the collimator aperture small limits the energy
distribution, it also reduces the amount of passing electrons, and therefore the statis-
tics.
However, despite optimizing these parameters, the quality of the energy distribution is
mainly influenced by the source collimation itself. Additionally, it can cause an energy
shift. The dispersion of the source must be reduced by optimizing its collimation.
In the experimental setup, the source is placed inside a housing that prevents uncon-
trolled radiation from escaping into the environment. Emitted beta particles can only
leave this housing through a small collimated aperture; hence, the angular spread de-
pends on its dimensions. Therefore, the components of the experimental setup must
be categorized in detail to optimise the energy resolution.
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8. Calibration of readout system for
experimental setup

While Geant4 simulations allow investigating simultaneously the incoming electron
spectrum at the PMMA layer and the corresponding distribution of detected Cherenkov
photons, it is experimentally impossible, but needs to be separated into two different
steps, i.e.

1. the determination of electron energy distribution behind the collimator and

2. the detection of Cherenkov photons produced by the PMMA layer.

The main experiment is conducted in step two; however, without a proper analysis of
the incoming electrons, one cannot assign a resulting Cherenkov photon distribution
to a specific electron energy. As already observed in Geant4 simulations in chapter
7, an energy selection can only be obtained up to a certain precision. The resolution
is limited by the setup properties, e.g., the collimated opening of the source, which
causes angular dispersion. Additionally, stochastic scattering processes with remaining
air molecules also lead to energy losses.
For the electron energy distribution for step one, the following three different detector
systems were tested:

• Si(Li) pin detector

• BC-408 plastic scintillator with PMT

• sodium iodide scintillator with PMT

The resulting detector signals are then processed with a multichannel analyzer (MCA)
after being amplified by a main amplifier. The MCA can analyze positive signals only;
therefore, the unipolar output of the main amplifier is used. For the semiconductor
detector, an additional preamplifier is required. Figure 8.0.1 shows the readout setup.

The MCA analyzes incoming signals via pulse-height analysis (PHA). PHA is a
common method used in spectroscopy to measure an energy spectrum. It is a counting
method where an input pulse is assigned to an MCA channel by its amplitude, resulting
in an energy spectrum. The lower-level and upper-level discriminators (LLD and ULD,
respectively) set the amplitude range in which signals are converted. An additional
threshold voltage (THD) marks the upper noise limit, which is usually set slightly
above the baseline. Noise, which corresponds to low signals, can be minimized by
setting a threshold voltage (THD) above the signal’s baseline. The THD not only
inhibits noise-triggered signal conversion but also works as a safety mechanism against
pile-up. As long as the signal stays above the THD, no new conversion is triggered.
The conversion is done during the falling edge, if the peak does not exceed the ULD.
Figure 8.0.2 illustrates the internal PHA principle. [Com].

35



Figure 8.0.1.: Left: readout system using Si(Li) pin detector. Right: readout system using
scintillator and PMT. The detector signals are split after the main amplifier
to analyze at the MCA and to observe the signal on the oscilloscope (OSC)
simultaneously.

Figure 8.0.2.: Internal principle of pulse-height analysis. A signal is analyzed, defined by the
falling edge, if its amplitude lies between UHLD and LLD. Adapted from [Com].

All radioactive sources which are used for the calibration measurements are described
in Section 2.3.1.

8.1. Linearity of MCA

Before starting the investigation with the detectors, the MCA is first checked for its
behavior regarding incoming signals. For this, a signal generator 1 sent 10 µs signals
with amplitudes between 0.5 and 7V in 500mV steps to the MCA (Table 8.1). These
values can be fitted to check the behavior of the MCA for incoming signals, presented
in Figure 8.1.1. It showed that the MCA behaves linearly to the amplitude of incoming
signals.

1Agilent 33250A
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Signal amplitude (V) MCA channel

0.5 551
1.0 1099
1.5 1661
2.0 2228
2.5 2799
3.0 3373
3.5 3930
4.0 4503
4.5 5078
5.0 5653
5.5 6231
6.0 6807
6.5 7386
7.0 7966

Table 8.1.: MCA channels for differ-
ent signal amplitudes

1 2 3 4 5 6 7
Signal amplitude (V)
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data
 slope=1142 ± 2
 y-intercept= 50 ± 8 

Figure 8.1.1.: MCA linearity check for MCA. The
MCA shows a linear behavior.

8.2. Silicon lithium pin detector

The Silicon lithium (Si(Li)) pin detector, shown in Figure 8.2.1, is a semiconductor-
based detector, sensitive to charged particles. The detector has a 3mm thick intrinsic
layer and a total sensitive area of 1250mm2 [Fle]. For this calibration, 207Bi is used.

Figure 8.2.1.: Si(Li) pin detector

The calibration curve is based on 207Bi and is validated with 137Cs. An example of a
recorded 207Bi spectrum, including fitting, is shown in Figure 8.2.2. Two double peaks
can be identified, which can be assigned to the K and L-shell conversion electrons of
the first two gamma transitions. Therefore, for both fits, a combination of two double
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Gaussians (peak position µi and standard deviation σi) with a linear background (slope
m, y-intercept b),

f(x;µ1, σ1, µ2, σ2,m, b) =
2∑

i=1

1√
2πσ2

i

exp

(
(x− µ2

i

2σ2
i

)
+mx+ b , (8.1)

is chosen. This results in a total of 4 usable points for a calibration fit.

Figure 8.2.2.: 207Bi spectrum, recorded with Si(Li) pin detector.

In contrast, while all peaks of 207Bi are easily distinguishable, the recorded 137Cs
spectrum only shows one larger bump, which is slightly deformed. This implies that
both conversion K and L-conversion electrons need to be taken into consideration. Fig-
ure 8.2.3 illustrates one fitted 137Cs spectrum.

Multiple 207Bi measurements are taken into account, whose fit parameters are listed
in Table 8.2. The mean values of the peak positions correspond to the MCA values
for the respective conversion electrons, resulting in the linear calibration fit depicted
in Figure 8.2.4. The calibration fits with

slope: m = (2.46± 0.06)× 10−4 (8.2)
y-axis intercept: b = 0.022± 0.006 (8.3)

agrees well with the mean values of the two measured conversion electrons of 137Cs,
summarized in Table 8.3. Using the calibration function, one obtains for the 137Cs
conversion electron energies

K-shell: CE(µ̄1) = (620± 22) keV (8.4)
L-shell: CE(µ̄2) = (656± 23) keV . (8.5)

The corresponding literature values CEK = 624.216 keV and CEK = 655.668 keV agree
within the 1σ region.
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Figure 8.2.3.: Example of a measured 137Cs spectrum including double Gaussian fit + linear
background.

Fitted peak parameter for 207Bi (MCA channel)
Peak 1 Peak 2 Peak 3 Peak 4

µ1 σ1 µ2 σ2 µ3 σ3 µ4 σ4

1871± 1 59± 2 2184± 11 72± 15 3865± 1 87± 1 4159± 1 83± 1
1861± 1 46± 1 2174± 4 52± 5 3855± 1 64± 1 4151± 1 65± 1
1869± 1 46± 1 2185± 5 53± 6 3872± 1 63± 1 4168± 1 66± 1
1857± 1 55± 1 2169± 8 61± 11 3841± 1 80± 1 4134± 1 79± 1
1834± 1 58± 1 2145± 7 62± 9 3802± 1 87± 1 4099± 1 76± 1
1863± 1 45± 1 2179± 4 52± 5 3860± 1 62± 1 4157± 1 65± 1

Mean peak values (MCA channel)

µ̄1 = 1859± 12 µ̄2 = 2173± 14 µ̄3 = 3849± 24 µ̄4 = 4151± 25

Table 8.2.: Fitted Peak values of recorded 207Bi spectra.

Fitted peak parameter for 137Cs (MCA channel)
Peak 1 Peak 2

µ1 σ1 µ2 σ2

2388± 1 74± 1 2533± 1 56± 1
2446± 1 82± 1 2599± 2 65± 1
2454± 1 78± 1 2605± 2 60± 1
2417± 1 65± 1 2555± 1 54± 1

Mean peak values (MCA channel)

µ̄1 = 2426± 26 µ̄2 = 2573± 31

Table 8.3.: Fitted Peak values of recorded 137Cs spectra.
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Figure 8.2.4.: MCA-Energy calibration for the Si(Li) pin detector using 207Bi and validation
with measured 137Cs conversion electrons.

Although Si(Li) pin detectors are designed to work under vacuum conditions, since
their detection principle operates independently of the surrounding medium, this de-
tector does not seem to be vacuum operable. Figure 8.2.5 shows two different 90Sr
straight measurements using the vacuum chamber. Although the conditions and set-
tings were identical, the spectrum behaves differently; the subsequent measurement on
the right side seems to be compressed. Therefore, the investigated Si(Li) cannot be
used for the main measurements.

Figure 8.2.5.: 90Sr spectra recorded by Si(Li) pin detector in vacuum. Left: measurement
from March 2025. Right: measurement from May 2025.
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8.3. Sodium iodide scintillator and PMT

Talium-doped sodium iodide crystals (NaI(Tl)) are commonly used as scintillator ma-
terials, whereby their doping with talium improves the energy resolution compared to
pure sodium iodide scintillators. Due to its hygroscopic ability, NaI(Tl) can absorb wa-
ter from the air, which leads to its decomposition. Therefore, this scintillator requires
being hermetically packed to ensure a flawless operation. The used scintillator system
consists of a cylindrical aluminum housing (56mm diameter and 60mm length) and is
depicted in Figure 8.3.1. For scintillation light detection, the scintillator’s back side is
sealed not with aluminum, but with a light-guiding material, directly attached to the
PMT.

Figure 8.3.1.: NaI(Tl) scintillator with its housing. Left: front side. Right: back side.

The PMT is powered with a bias voltage of 2 kV, the amplification factor at the
main amplifier is 2.5. A recorded, coarser binned and fitted 207Bi spectrum is pictured
in Figure 8.3.2. In contrast to the Si(Li) pin detector, which resolved the conversion
electrons for the first two gamma lines, the first two gamma peaks themself are detected
due to the higher detection efficiency of gammas, which also are the most intense
radiations for 207Bi. Further measurements are done for 137Cs and 22Na as well as
60Co. Just as in the Bismuth spectrum, only gamma peaks can be identified, while no
conversion electrons are detectable. All fitted peak results lead to a linear MCA-energy
calibration curve with the fit parameters

slope: m = (3.6± 0.3)× 10−4 (8.6)
y-axis intercept: b = −0.08± 0.05 , (8.7)

shown in Figure 8.3.3. The settings cover an energy range up to almost 3MeV. The
region of interest for 90Sr is limited to 6500 MCA channels. The uncertainties on the
slope are one magnitude bigger than the uncertainties for the Si(Li) detector calibra-
tion. Table 8.4 summarizes all measured peaks with their corresponding literature
values Elit, and the calculated energies Emeas using the calibration function are added
in the last column. All Emeas agree well with the literature values. The calculated
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uncertainties are mainly affected by the uncertainty of the y-axis intercept and might
be overestimated.

Figure 8.3.2.: Recorded 207Bi spectrum using NaI(Tl) scintillator and PMT

Source Fit parameters (MCA channel) Literature energy Calculated energy
Peak µ Width σ Elit (keV) Ecalc (keV)

207Bi 1654± 1 95± 1 569.698 516± 71
207Bi 3056± 1 138± 1 1063.656 1020± 110
137Cs 2076± 1 114± 1 661.657 667± 80
22Na 1545± 1 91± 1 511.000 476± 69
22Na 3801± 1 144± 1 1274.540 1290± 130
60Co 3478± 1 136± 1 1173.217 1170± 120
60Co 3935± 1 132± 1 1332.492 1340± 130

Table 8.4.: Fitted Gamma peaks of recorded spectra of 207Bi, 137Cs, 22Na and 60Co for sodium
iodide scintillator. The last column lists the calculated energies Ecalc using the
calibration function. For the literature values Elit, see Chapter 2.3.1.

As already mentioned above, a recording of conversion electrons with the used detec-
tor is barely possible, although sodium iodide is also sensitive to charged particles. The
back side, consisting of the light guide material, must be attached to the PMT so that
the aluminum side seals the collimator chamber. Consequently, the conversion elec-
trons have to traverse the aluminum before hitting the NaI(Tl) crystal. The electrons
lose a fraction of their energy inside the aluminum due to radiation losses. Figure 8.3.4
presents the energy loss of electrons in aluminum as a function of the electron energy.
Conversion electrons with energies around 1MeV are not able to hit the scintillator
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Figure 8.3.3.: MCA-energy calibration for sodium iodide scintillator.

for aluminum thicknesses greater than 2.5mm. Hence, the aluminum shielding signifi-
cantly reduces the energy of incoming electrons, disqualifying this NaI(Tl) scintillator
for investigation of the beta spectrum of 90Sr.

8.4. BC-408 and PMT

At last, another calibration was performed using BC-408, a polyvinyltoluene-based
plastic scintillator by Saint-Gobain with a density of 1.032 g/cm3. It is sensitive to
charged particles, suitable for beta spectroscopy. In contrast to a sodium iodide scin-
tillator, whose sensitivity is optimized for gammas, BC-408 is only sensitive to low-
energetic photons below 100 keV, and operable in vacuum [Sai16]. This scintillator,
shown in Figure 8.4.1, has a diameter of 57.15mm and a thickness of 1 cm and fits per-
fectly on the PMT. It allows an electron detection with kinetic energies up to 1.86MeV
2. This does not cover the whole range of the 90Sr beta spectrum, but the important
energies. Since the scintillation light is emitted isotropically, the side surface is covered
with polytetrafluoroethylene (PTFE) to reduce photon escapes.

2This estimation is based on a stopping power of 1.802MeVcm2/g for 1.8MeV electrons, based on
ESTAR database [Ber+].
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Figure 8.3.4.: Energy loss of electrons in aluminum. The required stopping power is extracted
from the ESTAR database [Ber+, ESTAR].

Figure 8.4.1.: BC-408 scintillator. Left: front and side view. Right: placement on PMT.
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The bias voltage applied to the PMT is still 2 kV, but a higher gain factor (6.5 instead
of 2.5) is set for the BC-408 measurement. There are three peaks visible when recording
a 207Bi spectrum, depicted in Figure 8.4.2. The first (second) peak corresponds to the
K-shell (L-shell) conversion electron of the first gamma line, having a characteristic
energy of 481.7 keV (553.8 keV). These two peaks are fitted together with a double
Gaussian with a linear background. The third peak corresponds to the 975.7 keV K-
shell conversion electron of the 1063.7 keV gamma line (975.7 keV and 1047.8 keV).
Hence, one obtains a linear fit shown in Figure 8.4.3. The uncertainties are in the same
magnitude as for the sodium iodide scintillator. The fit parameters are

slope: m = (2.45± 0.10)× 10−4 (8.8)
y-axis intercept: b = 0.16± 0.03 . (8.9)

Figure 8.4.2.: 207Bi spectrum using BC-408 scintillator, including fits.

Besides 207Bi, spectra were also recorded for 60Co and 22Na. Although there are
low-energy conversion electrons for 60Co below100 keV, they are not detected; instead,
Compton edges can be identified (see Figure 8.4.4). These energies can be calculated
by

Ec = 1− 1

1 +
2Eγ

mec2

(8.10)

and occur when the emitted photons with energy E transfer the maximum possible
energy Ec to an electron; hence, there is a characteristic drop behind a Compton
edge. The Compton edge is fitted using a combination of a Gaussian function and the
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Figure 8.4.3.: MCA-Energy calibration for BC-408 scintillator.

complementary error function [SDA20]

f(E) = α1 · erfc
(
E − ECE√

2σ

)
+ β1 exp

[
(E − ECE)

2

2σ2

]
, (8.11)

with

α1(E) =
1

2

[
a(E2 + σ2) + bE + c

]
, (8.12)

β1(E) =
−σ√
2π

a(E + ECE) + b) (8.13)

and the complementary error function

erfc(E) = 1− 2√
π

∫ E

x

exp(−x2) dx . (8.14)

The fit parameters are a, b, c, σ and the Compton edge energy ECE. The same function
is used for 22Na. However, despite having low fit uncertainties, they strongly depend
on the fitted interval region and vary too much. Therefore, all Compton edges are
excluded and only 207Bi contributes to the MCA calibration. The fitted peak values of
the Compton edges (60Co and 22Na) also do not agree with the calibration fit (Figure
8.4.3).
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Figure 8.4.4.: 60Co (top) and 22Na (bottom) spectrum using BC-408 scintillator, including
fits for Compton edges.

8.5. Conclusion of the MCA-energy calibration

The MCA exhibits a linear dependence on the incoming signal amplitude, whose cor-
relation with the energy of detected particles leads to a linear conversion function
between the MCA channel and energy. Three different detectors verified this. The
investigation of the Gaussian peaks shows the energy resolution

R =
FWHM

E
=

2
√
2 ln 2 σ

E
(8.15)

for the Si(Li) pin detector (between 3.6 and 7.3%), followed by the NaI(Tl) scintillator
with resolutions between 7.8 and 13.9%. The BC-408 detected conversion electrons
only with resolutions below 13.9%. Although having the best energy resolution, the
investigated Si(Li) pin detector cannot be used for the following 90Sr measurements.
Furthermore, a proper detection of beta particles with the NaI(Tl) scintillator is un-
feasible due to its aluminum-made front side, which significantly reduces the energy of
electrons passing through. Therefore, the BC-408 scintillator, despite having the worst
energy resolution of all three detectors, is chosen for the upcoming determination of
beta electrons inside the vacuum chamber.
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9. Dark measurements and
background estimation

After selecting the BC-408 plastic scintillator with PMT as the most appropriate de-
tector system for the setup, the consistency and influence of background signals are
examined as the next step. This is important to create a background model to extract
the net signals.

9.1. Dark measurements and consistency

Since both the BC-408 scintillator and the PMT are placed behind the collimator
chamber, they are covered with a black blanket to reduce the noise by surrounding light
sources. The applied high voltage of the PMT is identical to calibration measurements
(2000V), and the baseline of the receiving signals is checked using an oscilloscope to
identify the threshold conditions. The baseline ends at an amplitude of approximately
100mV, which also agrees with the baseline during the calibration. Therefore, the
MCA threshold is set to 0.120. All measurements lasted 600 s.

Dark measurements are performed under four different light conditions:

• Ceiling lights on and blinds open

• Ceiling lights on and blinds closed

• Ceiling lights off and blinds open

• Ceiling lights off and blinds closed.

All global spectra follow a similar pattern. The influence of light dominates in the low
channel region. The ceiling lights continuously create light with a higher intensity than
the incoming daylight. Additionally, the daylight depends on the respective weather
conditions. Therefore, the ceiling lights cause the most noise, resulting also in higher
count rates (Table 9.1) and higher uncertainties due to the Poisson-like character of
the counting experiment.

Light condition Count rate N/s (counts/s) Count rate error
√
N/s (counts/s)

Lights on + blinds open 294 18
Lights on + blinds closed 180 14
Lights off + blinds open 15 4
Lights off + blinds closed 5 till 6 3

Table 9.1.: Livetime dark count rates for different light conditions for a small BC-408 plastic
scintillator. Applied bias voltage to PMT: 2000V.
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The influence of external light explains the low-channel background, whose respec-
tive energies lie below the threshold energy required to produce Cherenkov photons
later in PMMA. Hence, this part can be neglected in future measurements.
However, there are additional signals within the whole range. One reason is the influ-
ence of cosmic particles. These particles can deposit a tiny fraction of their energies in
the scintillator, leading to additional scintillation light.
Table 9.2 contains the dark count rate for a round BC-408 scintillator with a diameter
of 57.15mm, taken on different days. The average dark count rate does not significantly
increase above 8.7± 0.1 counts per second, compared to the smaller scintillator (5 to 6
counts per second). The background is stable, providing a good base for reproducible
measurements.

Livetime (s) Total counts Count rate (counts/s)

113 880 7.79± 0.27
106 790 7.45± 0.27
600 5551 9.25± 0.13
600 5176 8.63± 0.12

Weighted mean count rate: (8.7± 0.1) counts/s

Table 9.2.: Dark measurements with the big BC-408 scintillator, no lights and blinds down.
Applied bias voltage to PMT: 2000V.

9.2. Determination of background level

For the determination of the background level, the dark measurement has to be ap-
proximated by creating an appropriate fit function. Since the recorded noise does not
behave like a known distribution, a polynomial approach

f(x) =
n∑

k=0

ck xk (9.1)

of order n with constant coefficients ck is assumed. The fit is then processed using the
function ’polyfit ’ from Python’s NumPy library. Afterwards, the mean squared error
(MSE) and the R2 value are calculated to compare the quality of the fits with each
other. Fluctuations are crucial for the background estimation. The MCA consists of
8192 channels and can process inputs between 0 and 10 volts. This implies that one
MCA channel covers a range of 1.2mV and can cause fluctuations, especially in the
low-energy region, where the most noise appears. Therefore, weights wi are included
using the inverse standard deviations σi of the data points, which is the square root of
the counts for a Poisson distribution, and hence

wi =
1

σi
=

1√
Ni

. (9.2)

The energy region below 0.75MeV contains the most noise, and thus the background
has to be determined properly in this region. For energies above 0.75MeV, the dark
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counts do not significantly contribute anymore. The noise increases again at the high-
energy end, corresponding to the highest MCA channel, which is the overflow bin.
Figure 9.2.1 shows the background modeling for polynomials of 2nd to 8th degree
for four different binnings. The MCA values are converted into energy by using the
MCA-energy calibration parameters from the Equations 8.8 and 8.9 for the BC-408
scintillator in Chapter 8.4. In the top left, there is the unbinned data. This is a
fluctuation-dominated distribution that cannot be properly modeled below 1MeV. A
bin width of 16, as shown in the diagram above right, looks promising for the fourth-,
the seventh-, and the eighth-degree polynomial fits. Both R2 values lie above 86%
and have the best description in the low-energy end, while the seventh-degree polyno-
mial underestimates that noise. A better approximation for this region is done using a
fourth-degree polynomial and a bin width of 32, presented in the bottom left, despite
having a lower R2 value. There are bigger deviations for energies above 2MeV, but
since such energies cannot be investigated with the BC-408 due to its small thickness
(see Chapter 8.4), this can be neglected. One can also use a binning of 64, which also
describes the low-energy background well using a polynomial of fourth order. Some
higher polynomials (6th, 7th, and 8th order) have slightly better fit values, but they
can tend to overfit the background. Compared to 32 data points per bin, there is no
significant improvement. A rougher binning is not recommended, since it can cause
information loss.

Figure 9.2.1.: Background modeling using different polynomial functions for different bin sizes.
Top left: unbinned data, top right: 16 MCA channels per bin. Bottom left: 32
MCA channels per bin, bottom right: 64 MCA channels per bin.
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After selecting the fit model, the net signal can be obtained. In the case of the
above data set, a bin width of 32 and a fourth-order polynomial result in the net
data presented in Figure 9.2.2. The net spectrum ends slightly above 1.75MeV, which
matches the detection limit of the used detector, so that the peak above 2MeV can
be verified as additional noise. The net spectrum agrees with the beta spectrum of
90Y (Figure 9.2.3). The contribution below 0.52MeV cannot be absolutely assigned
to the 90Sr part, since according to 9.2.3, 90Sr provides smoother falling edge below
0.5MeV. Some 90Sr betas may be recorded, but the background is underestimated.
This underestimation is then influenced by fluctuations. Another measurement series
shows no big peak below 0.25MeV, which reinforces the assumption that this peak is
noise-dominated.

Figure 9.2.2.: Example of the background subtraction and resulting net spectrum.
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Figure 9.2.3.: Combined beta spectrum of 90Sr and its daughter nucleus 90Y [Arf+15].
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10. Geometrical modifications of
the Geant4 setup

The Geant4 configuration used in Chapter 7 describes the experiment only in simplified
form. In this section, the Geant4 simulation will be modified by investigating the
experimental setup in more detail.

10.1. Determination of the magnetic field inside the
vacuum chamber

A real dipole magnet not only creates a homogeneous magnetic field in the area between
both coils, but also an additional inhomogeneous magnetic field around the homoge-
neous section. Previous measurements already investigated the profile for 40mT and
60mT fields, see [Koo23, Chapter 4.2.3]. However, these measurements were taken
outside the vacuum chamber, and hence, potential influences of the aluminum walls as
well as the mu metals are neglected.
Therefore, the magnetic field inside the magnet chamber was checked with a tangential
probe and read out by a microvoltmeter, both manufactured by Elwe Didactic GmbH.
The resolution of the voltmeter is 0.1mT. Since the probe’s stalk is shorter than the
magnet chamber, it is not possible to measure the whole field from the source cham-
ber’s side. For measurements from the source chamber’s side, the probe is fixed on the
source holder, while the probe was fixed on a tripod when doing measurements from
the other side. Due to the need for manual positioning, the misplacement of the probe
sensor is estimated to be ±1mm. The step size is 3mm when using the stepping motor,
otherwise 5mm. The small mu-metal attached to the source holder’s arm is neglected
in these measurements, but will be considered in the extrapolation. Afterwards, the
measured voltages are converted into millitesla by using the following calibration curve
of the voltmeter:

B

mT
= 1.044 · U

mV
. (10.1)

Here, the error on B is σB[mT] = 1± 1.5%.

The measured field map for 20mT, including a linear interpolation for visualization,
is shown in Figure 10.1.1. Further magnetic field measurements for 10, 30, 40 and 60mT
are included in appendix A.2. In case of the 10mT magnetic field, it was not measured
but calculated using the linear behavior between the bias current for the magnet and
the homogeneous field region. For this approximation, the mean of all other magnetic
fields was calculated. The coordinate system used matches the coordinate system used
in the Geant4 simulations (xy plane, with the origin at the center of the magnet). By
considering a magnetic field as homogeneous for deviations less than 10%, all fields
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are indeed homogeneous around the center. But contrary to simulations, a significant
surrounding rest field is measurable, since the used mu metal tubes are open on two
opposite sides, resulting in a lower bending radius. Furthermore, the peak values are
slightly higher (Table 10.1) than the designated fields. Since even slight differences in
the magnetic field can cause deviations from several keV, a field value of 23mT cannot
be assumed as 20mT. Therefore, the magnetic field in the Geant4 configuration is
enlarged and now considered inhomogeneous.

Figure 10.1.1.: Measured 20mT magnetic field with linear interpolation for visualization.
Scales are given in T and m.

Desired magnetic field (mT) Measured magnetic field peak (mT)

20 21.9
30 33.8
40 41.7
60 68.8

Table 10.1.: Measured peak field values.

10.2. Source position and distance to the detector

The bare 90Sr source is not located directly next to the small mu metal, but inside
a cylindrical source box that shields the environment from emitting beta particles.
The beta emitter is placed 32mm inside the source, while the emitted electrons then
pass through the 2mm diameter opening. This implies a larger distance between the
source and the detector, and hence, an increase in the interaction probability with air
molecules. On the other hand, the smaller opening could improve the energy resolution
due to the reduction of angular dispersion. Moreover, further adjustments also allow
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for moving the source closer to the wall of the source chamber, resulting in a distance
reduction of 70mm on the experiment’s side.

10.3. Modified Geant4 setup

All the adjustments above are taken into account for creating the following Geant4
setup, shown in Figure 10.3.1, which agrees with the dimensions of the experimental
setup. The origin still lies at the center of the magnet, and the PMMA corresponds
to the scintillator in the experiment. First and foremost, a source tube is added with
the same dimensions as the experimental one. The point-like particle gun (red dot)
is placed 32mm inside the box, whose round 2mm diameter opening is smaller than
the Mu-metal cross section, reducing the angular spread down below 2◦. It is assumed
that the box shields perfectly; hence, all particles hitting one of the walls are killed,
including their secondary particles. The pivot point, meaning the end of the 68mm long
small Mu-metal tube, is fixed along the x-axis onto −34.5mm. Finally, there is also a
change in the magnetic field area (pink part). While the old simulation just includes
a small, idealistic homogeneous field, the new field is considered inhomogeneous. Its
length along the x-axis is now 205mm instead of 60mm and encompasses the entire
magnetic field chamber, expecting a stronger influence, and hence, a larger bending.
Since the magnetic field cannot be considered homogeneous anymore, the field must be
computed for each position now. This implies the requirement of a field interpolation
and extrapolation, based on the measured field maps. The numerical calculation script
is adjusted similarly.
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Sr-90 Mu metal

Mu metal

Source box 

Magnetic field

Collimator

Detector

Source box

hole:
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Figure 10.3.1.: Modified Geant4 setup. Top: side view. Bottom: Source box. Electrons can
only exit the source box through an opening with a radius of 1mm.
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11. Scan measurements

This chapter contains scan measurements for both experiment and simulation, in which
measurements are taken for different source positions. In contrast to investigating
specific energies by calculating the source positions, these scan measurements do not
require any trajectory calculations in advance, but are based on the experimental po-
sitions. Hence, a proper magnetic field approximation is not required.
For these measurements, the linear offset, meaning the position along the y-axis of the
source with respect to the center of the collimator, is varied in steps of 5mm. The
rotary stage’s angle θ is changed in steps of 10◦. The corresponding bending angle φ
can be calculated using

φ = arctan

(
r sin θ

l + r cos θ

)
= arctan

(
42 · sin θ

93 + 42 · cos θ

)
(11.1)

with measured parameters r = (42.0± 0.1)mm and l = (93.0± 0.1)mm and are listed
in Table 11.1. The corresponding uncertainties σφ are calculated via the Gaussian
error propagation. The bias voltage for the PMT is set on 2 kV for all following
measurements. In addition, the analysis of the experimental data is done using a
bin size of 64 MCA channels. This corresponds to an amount of 128 bins. The aim
of these measurements is the global investigation of the energy distribution of the
electrons reaching the scintillator after passing the collimator. The comparison between
experiment and simulation will help to further optimize the simulations, as it provides
an initial assessment of the magnetic field estimation.

Rotary stage angle θ (◦) σθ (◦) Bending angle φ (◦) σφ (◦)

0.00 0.02 0.000 0.006
-10.00 0.02 3.107 0.006
-20.00 0.02 6.189 0.006
-30.00 0.02 9.220 0.006
-40.00 0.02 12.171 0.006
-50.00 0.02 15.009 0.006
-60.00 0.02 17.696 0.005
-70.00 0.02 20.183 0.005
-80.00 0.02 22.412 0.004
-90.00 0.02 24.305 0.004

-100.00 0.02 25.762 0.003
-110.00 0.02 26.652 0.002

Table 11.1.: Rotary stage angle θ and its corresponding bending angle φ, used for the scan
measurements.
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11.1. Investigation of the experimental electron
spectra

Before the experimental data is compared with Geant4 simulations, the experimental
data is investigated in detail.

First tests with 5mm collimator opening

First, scan measurements are performed for a 5mm collimator opening for 100 s. The
applied current to the magnet coils is 0.775A, providing a core field of 20mT. Fig-
ure 11.1.1 depicts the resulting net signals after subtracting the background for rotary
stage angles of -40, -60, -80, and −110◦ (-45, -65, -85, and −105◦ for 15mm offset due
to the measurements taken). The minus sign in θ only means the orientation from the
zero point, since it rotates anti-clockwise. Signals corresponding to energies between
0.6 and 1.90MeV are detected. Each spectrum consists of only one distributed peak;
no bump is observed for the background-dominated low-energy region. This indicates
a good agreement with the background model. A reduction in the angle causes a shift
in the spectrum toward lower energies for all linear offsets. This agrees with the ex-
pectation, since low-energy particles bend more in a magnetic field. Depending on the
linear offset, the total number of observed electrons varies for different angles.

In contrast to 20mT, increasing the core magnetic field up to 30mT (= 1.450A cur-
rent for the magnet) results in a shift to higher energies, shown in Figure 11.1.2. There
are no signals detected corresponding to electrons lower than 1MeV. Furthermore,
larger angles become more important than for a smaller field. For an offset of at least
10mm, the most dominant distribution in terms of detected counts is achieved at a
bending angle φ = 25.8◦, while a bending angle of 17.7◦ is the most dominant for the
20mT field.

However, in each case, the energy spread is very high, extending in the range of
a few hundred keV. This implies that the majority of incoming electrons do not hit
the scintillator perpendicularly, which significantly increases the energy distribution
and leads to poorer energy resolution. To verify the electrons that hit the scintillator
perpendicularly, the peak ratio PR is determined. A PR calculation requires that, in
addition to a background measurement, each measurement series must further include
a straight measurement without an applied magnetic field. Either all measurements
must have the same time duration, or a scaling is necessary. At first, the investigated
spectrum is fitted with a Gaussian function

f(x;µ, σ) =
1

σ
√
2π

exp

(
−1

2

(x− µ)2

σ2

)
. (11.2)

Afterwards, the fitted peak amplitude Afit at the energy µ is divided by the amplitude
Astraight(µ) of the corresponding straight measurement at energy µ:

PR =
Afit(µ)

Astraight(µ)
. (11.3)

The straight measurement gives the entire observable beta spectrum of the source
without any filtering. After switching on the magnetic field and changing the source
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Figure 11.1.1.: Net signal comparison of electrons bent in a magnetic field with a 20mT
homogeneous region for rotary angles θ = −40,−60,−80 and − 100◦ for a
5mm collimator opening, separated for a linear offset of 0, 5, 10 and 15mm.
The measurement time is always 100 s. For 15mm offset, the angles are reduced
by −5◦ each. Each corresponding bending angle φ is calculated. The low-level
cut corresponds to an energy cut at 0.2MeV.

position, the electrons are distributed in such a way that only a certain proportion hits
the detector, which hits the detector straight or within the angular acceptance. Hence,
a Gaussian distribution is expected around the main energy µ. In the best case, the
ratio should be PR = 1, meaning that electrons with energy µ hit the detector per-
pendicularly and are centered in the distribution. A value PR ̸= 1 indicates that the
fitted electrons with energy µ do not hit the detector perpendicularly.

Figure 11.1.3 shows the peak ratios for a 5mm collimator opening and a 10mm
linear offset. The peak ratio decreases significantly if the angle is too low. The best
peak ratio is obtained for θ = 70◦, which corresponds to φ = 20.18◦. The peak ratio
lies about 90%.

Scan measurements for 20mm field and 3mm collimator

The collimator is reduced to 3mm to reduce the energy spread by limiting the angular
acceptance range. The angular acceptance ∆ is the maximal angular deviation under
which electrons are still able to pass the collimator. The narrower the collimator
aperture, the lower ∆; an ideal ∆ of 0◦ means that electrons can only traverse the
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Figure 11.1.2.: Net signal comparison of electrons bent magnetic field with a 30mT homo-
geneous section for rotary angles θ = −40,−60,−80 and − 100◦ for a 5mm
collimator opening, separated for a linear offset of 0, 5, 10 and 15mm. The
measurement time is always 100 s. Each corresponding bending angle φ is cal-
culated. The low-level cut corresponds to an energy cut at 0.2MeV.

collimator perpendicularly. The angular acceptance is

∆ = arctan

(
wc

lc

)
. (11.4)

It depends on both the collimator length lc
1 and width wc. A reduction of the width

from 5 to 3mm leads to a reduction of ∆ of approximately 60%, and hence, a reduction
of the counts.
Measurements are taken for 20mT with an extended duration of 600 s. The netto sig-
nal spectra for the same angles and offsets as previously are shown in Figure 11.1.4. As
expected, the spectra are narrower compared to the 5mm. While for a 5mm collima-
tor width (Figure 11.1.1) signals above 1.75MeV are not recorded, the 3mm aperture
reduces the range below 1.5MeV.

The corresponding peak ratios for a 10mm linear offset are depicted in Figure 11.1.5.
The best peak ratio are obtained for an rotary angle θ between 60◦ and 70◦. This agrees
with the peak ratio for a 5mm collimator opening (Figure 11.1.3), but the peak ratio
drops faster if the angle is changed. That is expected, since the narrower opening causes
a reduction of the angular acceptance, so that electrons must traverse the collimator

1Not to be confused with the parameter l for the angle relation
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Figure 11.1.3.: Peak ratios for a 5mm collimator opening and 10mm linear offset as function
of the rotary stage angles θ. The bin width is 64 MCA channels.

more straight.

However, there are some abnormalities. On the one hand, each spectrum consists
of an obvious noise peak at the low-energy end, indicating that the background model
disagrees with the recorded data. On the other hand, all main bumps are shifted by
at least 250 keV to lower energies. For example, as shown in Figure 11.1.1, using the
5mm opening with a 10mm offset and θ = −60◦, the peak energy is located around
1.25MeV, in contrast to the peak energy near 1MeV for the 3mm opening. Later
measurements show that there was an unknown problem with the electronics. The
reduction of the amplification factor solved the problem. This, however, implies that
the detector calibration cannot be used for future measurements.

11.2. Comparison of experimental scan
measurements with the modified Geant4 setup

The modified Geant4 setup is more complex than the Geant4 setup with the homoge-
neous magnetic field, but it is assumed to provide more realistic results. However, the
implementation of an inhomogeneous magnetic field complicates the calculation of the
electron trajectories, as both field interpolation and field extrapolation are required.
The following scan measurements aim to compare experimental data with simulated
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Figure 11.1.4.: Net signal comparison of electrons bent magnetic field with a 20mT homo-
geneous section for rotary angles θ = −40,−60,−80 and − 100◦ for a 3mm
collimator opening, separated for a linear offset of 0, 5, 10 and 15mm. The
measurement time is always 600 s. Each corresponding bending angle φ is cal-
culated. The low-level cut corresponds to an energy cut at 0.2MeV.

data to analyse how well the magnetic field is approximated. It is a good starting point
to check whether the magnetic field strength is either underestimated or overestimated.
For the corresponding simulations, the interpolation is based on the weighted 4-Nearest-
Neighbor method, which interpolates the magnetic field at a point r⃗′ by calculating the
weighted average magnetic field of the four nearest data points Bz, i. The weight wi is
considered the Euclidean distance

wi =
1

|r⃗′ − r⃗i|
, (11.5)

leading to the interpolation formula

Bint
z =



∑K
i=1

(
Bz,i ·

1

|r⃗′ − r⃗i|

)
∑K

i=1

(
1

|r⃗′ − r⃗i|

) , if ri ̸= 0 ∀ i

Bi , if r⃗i = r⃗′ .

(11.6)

On the other hand, the extrapolation considers a cubic radial decay

Bext
z =

Bnearest
z

|r⃗′ − r⃗|3
(11.7)
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Figure 11.1.5.: Peak ratios for a 3mm collimator opening and 10mm linear offset as function
of the rotary stage angles θ. The bin width is 64 MCA channels.

of the nearest known field value r⃗. This decay corresponds to a simplified decay of
a magnetic dipole field and is chosen since the used magnet is designed as a dipole
magnet, consisting of two coils and an iron yoke. Furthermore, a vacuum, defined by a
pressure of 10mbar and a temperature of 300K, is set. The particle gun emits electrons
with an angular deviation up to 2◦.
Figure 11.2.1 presents some comparisons for the 20mT field between the Geant4 sim-
ulation and experimental data from the electron monochromator. The experimental
results agree with the 5mm collimator opening, shown on the right side. The best
match is for θ = 60◦. The experimental energy spread reduces with larger bending
angles φ, while the simulated distribution becomes asymmetric. The difference in the
energy spread is clearer for 3mm opening on the right side. An angle increase does not
affect the simulated spread at all.

11.3. Conclusion for the scan measurements

Scan measurements for 20mT for different linear offsets were examined. The exper-
imental net signal depends on the setting of the source position; both the angular
alignment and the linear offset affect the number of detected signals and the energy
range. Furthermore, a reduction of the collimator aperture significantly improves the
energy resolution. For the Geant4 simulations, instead, a 3mm collimator opening
does not reduce the energy spread. The energy spread difference between simulation
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Figure 11.1.6.: Recorded spectra for 3mm collimator opening at 20mT. Top: φ = 17.70◦ and
5mm offset. Bottom: φ = 17.70◦ and 10mm offset. The duration for both
measurements and the corresponding dark measurement is 600 s.

and experiment increases with larger angles. This implies that the simulated setup still
needs to be improved.
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Figure 11.2.1.: Comparison of the energy spectrum at the detector between the Geant4 sim-
ulation and experimental data. The experimental data includes only the net
signal.
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12. Magnetic field interpolation

The magnetic field is a crucial part of the electron monochromator, since it is neces-
sary to separate electrons with different energies. Even slight changes in a homogeneous
magnetic field significantly influence the electron trajectory; hence, it is necessary to
optimize the magnetic field approximation to ensure not only proper numerical calcu-
lations, but also realistic Geant4 simulations.

A field interpolation is necessary since the distance between adjacent measured points
(> 3mm) is significantly greater than the electron iteration length in Geant4 and
the numerical calculations (a few tens µm at last). Here, we limit to two different
interpolation classes: the weighted K-Nearest-Neighbor algorithm and Radial Basis
Functions. Since the 4-Nearest-Neighbor is used as the default, the goal of this study
is to prove the quality of the implemented function and to check if the interpolation
needs to be improved.

12.1. K-Nearest Neighbor method

A simple interpolation method is the weighted K-Nearest Neighbor (K-NN) algorithm,
where K represents the number of nearest points that are considered in the interpola-
tion. It is a standard algorithm for various Machine Learning tasks, both regression and
classification. The interpolation of the magnetic field Bz

(
r⃗′
)

at point r⃗′ = (x′
i, y

′
i, z

′
i)

T

is computed by using the weighted mean formula

Bz

(
r⃗′
)
=

∑K
i=1 (w

p
i ·Bz,i(r⃗i)∑K

i=1 wi

p

, (12.1)

summing up the measured field values Bz,i at points r⃗i = (xi, yi, zi)
T and their respective

weights wp
i . These weights correspond to the Minkowski distance

wi =
1

(|x′ − xi|p + |y′ − yi|p)
1
p

(12.2)

and depends on the power parameter p. Setting p = 2 results in the known Euclidean
distance

wi =
√

(x′ − xi)2 + (x′ − xi)2 . (12.3)

While a high p parameter penalizes large distances even more, which can be useful
for clustered grids or large changes, reducing p lowers the weighting factors. Inserting
equation 12.2 into 12.1, leads to

66



BK-NN
z =



∑K
i=1

(
Bz,i ·

1

(|x′ − xi|p + |x′ − xi|p)
1
p

)
∑K

i=1

(
1

(|x′ − xi|p + |x′ − xi|p)
1
p

) , if ri ̸= 0 ∀ i

Bi , if r⃗′i = r⃗′ .

(12.4)

If the interpolated points match a known point, its value is assumed. In contrast to
Radial Basis Functions, this assumption is necessary; otherwise, the interpolation will
crash. Hence, the K-NN method provides a non-smooth interpolation.
Tunable parameters for the K-NN are the number of considered neighbors K and the
power parameter p. Different combinations are tested and analyzed using methods of
the Python library "sklearn". The measured field data is randomly split five times into
80% training and 20% test datasets using "KFold". After training the K-NN model
(KNeighborsRegressor), the Cross-Validation Root Mean Squared Error (CV-RMSE)
and the averaged goodness of fit R2 are calculated.
Both parameters K and p are varied between 1 and 5 in integer steps. The ’best’ K-
NN interpolation based on CV-RMSE and R2 for all measured fields is summarized in
Figure 12.1.1. The CV-RMSE values are marked in blue, while the R2s are colored in
red. In each case, the best result is obtained using p = 1, the lowest possible value for a
proper Minkowski metric, in a 3-KK or 4-KK interpolation. The CV-RMSE increases
with the total magnetic field strength, while R2 does not change significantly and re-
mains at a high level. The influence of K is shown in Figure 12.1.2 and validates 3 and
4 as the optimal number of included neighbors K due to the lowest CV-RMSE values.
The CV-RMSE indicates the average absolute error between known data and predicted
data and depends on the Bz,i. Therefore, a linear increase is expected, which agrees
with the measured field strengths in the homogeneous region, see Table 12.1. If the
CV-RMSE is scaled with these values, the average relative error for the interpolated
points lies between 1.5 and 2.5%.

Magnetic field (mT) Nearest point K Power parameter p CV-RMSE (mT)

10 4 1 0.18
20 3 1 0.36
30 3 1 0.53
40 4 1 0.97
60 3 1 1.6

Table 12.1.: CV-RMSE values using best K-NN for each magnetic field.

12.2. Radial basis functions

Radial basis functions (RBF) are a popular type of meshless method often used for the
reconstruction of unknown data or functions in neural networks. Meshless means that
the known data does not require special configuration, as the entire test data (known
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Figure 12.1.1.: CV-RMSE and R2 for the best K-NN combinations. The parameters K and p
are varied from 1 to 5 in full steps.

data) influences the interpolation by default. RBFs are further multivariate, analytic
functions and therefore exactly differentiable, providing smooth and continuous results.
Here, it is focused on two popular RBFs, the Multiquadratic

ΦMult(x⃗) =
√
1 + ||x⃗||22 (12.5)

and the Gaussian RBF

ΦGaus(x⃗) = exp
(
−||x⃗||22

)
, (12.6)

where the Euclidean norm

||x⃗||2 =

√√√√ n∑
k=1

x2
k (12.7)

reduces the n-dimensional feature (input) vector x⃗ to a scalar. Nowadays, a hyper-
parameter ϵ is added to optimize the interpolation. The interpolation is executed by
calculating the ’trial functions’

u(x⃗) =
n∑

k=1

αk Φ(||x⃗− y⃗k||2) , (12.8)
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Figure 12.1.2.: CV-RMSE for p = 1 and different number of neighbors K.

consisting of the absolute distance between the interpolation point y and the known
data points xk. Each summand is multiplied by a scale factor αk, which scales the
functions to the actual data. [Sch07]
In the case of the magnetic field, r⃗ consists of the distance

r⃗ = r⃗′ − r⃗k (12.9)

between the interpolated point r⃗′ and the measured point r⃗k. By combining this with
the sharing parameter ε, the interpolation for the z component of the magnetic field
Bz using the Gaussian function results in

BGaus
z =

n∑
k=1

αk exp

(
−
(ε
r

)2)
, (12.10)

and Φk αk = Bz, k. Bz, k denotes the measured field at point k. For the Multiquadratic
function, one obtains

Bmult
z =

n∑
k=1

αk

√
1 +

(ε
r

)2
. (12.11)

Similar to the K-NN method, the data is split up into a 80% training and a 20% test
subset. The resulting CV-RMSE is then compared for different shaping parameters ε
(50 to 1000 in steps of 50), whose results are summarized in Table 12.2. In case of the
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Gaussian RBF, the best ε lies around 150. A larger or lower ε significantly increases the
CV-RMSE, leading to a worse prediction, illustrated in Figure 12.2.1. Furthermore, the
higher fields, especially the 60mT one, tend to require a better determination of ε than
the lower fields. The corresponding best shaping parameters are listed in Table 12.2.
On the other hand, the Multiquadratic RBF interpolation also requires a sufficiently
large ε, but in contrast to the Gaussian RBF, the CV-RMSE does not significantly
increase for large ε within the inspected region. This can be seen in Figure 12.2.2. For
10, 20 and 30mT, a good choice is ε > 250, while ε should greater than 800 for 40 and
60mT.

Magnetic field Gaussian RBF Multiquadratic RBF
(mT) Parameter ε CV-RMSE (mT) Parameter ε CV-RMSE (mT)

10 180 0.27 500 0.11
20 140 0.49 200 0.18
30 130 0.67 250 0.26
40 190 3.6 1000 0.79
60 170 4.1 1000 1.1

Table 12.2.: Best results for interpolation using Multiquadratic and Gaussian RBF for each
magnetic field.

Figure 12.2.1.: CV-RMSE for different shaping parameter ε for Gaussian RBF.
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Figure 12.2.2.: CV-RMSE for different shaping parameter ε for Multiquadratic RBF.

12.3. Comparison of the interpolation methods

The Multiquadratic method yields the best interpolation as indicated by the CV-
RMSE, as shown in Table 12.3. For the 20mT field, the CV-RMSE for Gaussian
RBF is 4 times higher than for the Multiquadratic, while the 4-KK is nearly 3 magni-
tudes larger. However, it is only an indication and can depend on the train-test split.
Therefore, the entire field within the measured region is interpolated. The resulting
maps are depicted in Figure 12.3.1. The interpolation is based on a 300×300 point grid,
equidistantly distributed, and this time, the entire data set is used for the training.
The electrons travel along the x-axis, and the linear stage along the y-axis. All inter-
polations match the global trend: the magnetic field starts to decrease at x ≈ 0.03m,
corresponding to the position along the x-axis, where the vig Mu-metal region starts
(35.4mm). The 3NN field has a similar quality to the Multigaussian RBF, while the
Gaussian RBF produces some irregularities around x ≈ 0.04m, where the field slightly
increases. Hence, the Gaussian RBF interpolation is not as smooth as the other ones,
and therefore not suitable for the magnet interpolation.

A further comparison between the 4NN and the Multiquadratic RBF shows no sig-
nificant difference in the trajectory calculation between the two interpolations, which is
shown in Figure 12.3.2. The trajectory calculations outside the measured field stayed
untouched and will not affect the overall trajectory. Despite the 4NN (old method),
on the left side, interpolating being slightly worse than the 3NN (CV-RMSE difference
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Figure 12.3.1.: Interpolated field maps for 20mT. Top: 4-KK with p = 1, Gaussian RBF with
ε = 140. Bottom: Multiquadratic RBF with ε = 200.
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Interpolation CV-RMSE for corresponding field in mT
function 10mT 20mT 30mT 40mT 60mT

4-NN method 0.18 0.36 0.53 0.97 1.6
Gaussian RBF 0.27 0.49 0.67 3.6 4.1

Multiquadratic RBF 0.11 0.18 0.26 0.79 1.1

Table 12.3.: CV-RMSE comparison between 4NN and the RBF methods for the best param-
eters.

less than 0.02mT), it agrees with the Multiquadratic RBF’s result. This validates the
appropriate interpolation using 4NN, which does not need improvement. The next step
in the magnetic field evaluation is the investigation of the extrapolation method, but
this is outside of the scope of this thesis.

Figure 12.3.2.: Calculated electron trajectories for different electron energies. Top: 4NN (old
method). Bottom: Multiquadratic RBF (new method).
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13. Summary and future outlook

In the scope of this thesis, the concept of the electron monochromator for the inves-
tigation of high-energy electrons above 900 keV has been made. Geant4 simulations
with a homogeneous magnetic field were used to validate the experimental setup by
investigating the influence of the remaining gas in the vacuum chamber on the energy
resolution of the electrons after passing the collimator. The energy resolution is not
affected significantly if the vacuum is below 10mbar. It was identified that the angular
dispersion of the emitted electrons dominates the energy resolution. A multichannel
analyzer was validated as a readout system for the experimental setup. Multiple detec-
tors were tested to detect particles. An MCA-energy calibration using a combination
of a BC-408 plastic scintillator and a PMT was successfully applied. The experimen-
tal setup was modified by a new source holder design, and the distance between the
source and the detector could be reduced by around 60mm, reducing the interaction
of electrons with the remaining gas.
The existing Geant4 setup for the electron monochromator was tuned by a detailed
investigation of the experimental setup. A geometrical adjustment is the addition of
the source box, whose small collimated opening reduces the angular dispersion signif-
icantly. The magnetic field inside the chamber was measured for different magnetic
field strengths to create detailed magnetic field maps. It could be shown that the ini-
tial implementation of a pure homogeneous magnetic field is incorrect, since there are
measurable rest magnetic fields inside the mu metal tubes and cannot be neglected. At
last, the first scan measurements were done to compare the experimental results with
the Geant4 simulations.

These first tests of the electron monochromator are promising and showed that the
overall concept works. Now, more detailed studies are mandatory to improve the
energy resolution. For this, the interplay between the experiment and the Geant4 sim-
ulation is necessary. The magnetic field extrapolation of the inhomogeneous magnetic
field regions needs to be investigated. Currently, a cubic decay B(r⃗′) = B(r⃗)

(|r⃗′−r⃗|3)
is as-

sumed for a magnetic dipole field, based on the nearest measured magnetic field point
B(r⃗). However, this model has to be modified since it does not include the effects
of the mu metals. A comparison of Geant4 simulations with the experimental data
can help to validate different extrapolation methods. After optimising the magnetic
field approximation, it can then be used in the numerical calculations to determine the
positions for measuring specific electron energies.
On the experimental electron monochromator side, the next step is to optimise the
energy resolution by increasing the magnetic field and reducing the collimator aper-
ture. Since this will reduce the statistics, the total duration of measurements has to be
increased. This implies further investigations about additional influences, such as heat
development at the magnet. One has to observe if a temperature increase will signifi-
cantly affect the measurements. Additionally, a calibration with a GAGG scintillator
is planned, whose energy resolution is assumed to be better than the resolution of the
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BC-408 plastic scintillator.
In the near future, once the calibration is done and the optimal source positions and
magnetic field settings are found to investigate specific electrons, the second phase of
the electron monochromator experiment can start, which is the reconstruction of an
electron using the distribution of its created Cherenkov photons. For this, the scintil-
lator and PMT are replaced by PMMA multiple SiPM arrays.
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A. Appendix

A.1. Energy spreads for numerical calculations

B (mT)
E(MeV) 20 30 40 50 60 70 80

0.6 8.2 5.3
0.8 9.8 6.3 4.6
1.0 11.2 7.2 5.3 4.1
1.2 12.7 8.2 6.0 4.7 3.8
1.4 14.1 9.1 6.6 5.2 4.3 3.6
1.6 15.7 10.0 7.3 5.8 4.7 3.9
1.8 16.7 10.9 7.9 6.2 5.1 4.3 3.7
2.0 15.0 11.8 8.6 6.8 5.6 4.7 4.1
2.2 13.6 12.7 9.3 7.3 6.0 5.0 4.4

Table A.1.: Pivot table of calculated energy spreads for a 5mm collimator opening for various
homogeneous field strengths. All energy resolutions are calculated by Equation
6.4 and given in %.

B (mT)
E(MeV) 20 30 40 50 60 70 80

0.6 4.0 2.5
0.8 4.6 3.0 2.3
1.0 5.4 3.5 2.6 2.0
1.2 6.0 3.9 2.9 2.3 1.8
1.4 6.7 4.4 3.2 2.5 2.1 1.7
1.6 7.3 4.8 3.2 2.8 2.3 1.9
1.8 8.0 5.2 3.8 3.1 2.5 2.1 1.8
2.0 8.7 5.6 4.2 3.3 2.7 2.3 2.0
2.2 9.3 6.1 4.5 3.5 2.9 2.5 2.1

Table A.2.: Pivot table of calculated energy spreads for a 2.5mm collimator opening for vari-
ous homogeneous magnetic fields. All energy resolutions are calculated by Equa-
tion 6.4 and given in %.

A.2. Measured magnetic field maps
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Figure A.2.1.: Approximated 10mT magnetic field with linear interpolation for visualization.
It is calculated by taking the mean value of the measured magnetic fields (20,
30, 40 and 60mT).

Figure A.2.2.: Measured 30mT magnetic field with linear interpolation for visualization.
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Figure A.2.3.: Measured 40mT magnetic field with linear interpolation for visualization.

Figure A.2.4.: Measured 60mT magnetic field with linear interpolation for visualization.
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