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Chapter 1

Introduction and Motivation

KASCADE-Grande is an extensive air shower experiment to study the cosmic ray energy spec-
trum and chemical composition in the energy range 100TeV−1EeV. It is a ground-based multi-
detector set-up that measures simultaneously the electromagnetic, muon and hadronic compon-
ents of the extensive air showers. The Grande array of the KASCADE-Grande experiment is
sensitive to the charged component of the air shower. The current Grande data aquisition system
provides only information about the energy deposit and the arrival time of the first particle in
a detector station. No information about the time development of the signal is provided. The
recording of a triggered shower event generates a dead time in which no further event can be
recorded.

A new FADC DAQ system, currently under development, is going to be installed, in ad-
dition, in the Grande array of the KASCADE-Grande experiment. It is a free-running and
self-triggering system, which will improve significantly the data quality of the experiment. It
provides digitized photomultiplier pulse shapes containing information about the energy depos-
its and the time development. In order to profit from this improvement, the development of fast
and efficient reconstruction algorithms for the FADC data is mandatory. A rigorous study of
the impact, that the FADC characteristics, e.g. resolution and sampling frequency, have on the
accuracy of the measurements is the aim of this thesis.

A brief introduction of the physics of cosmic rays and extensive air showers is given in
chapter 2. The KASCADE-Grande experiment, together with its aims and components, is de-
scribed in chapter 3. The chapter 4 presents the concepts and the features of the new FADC
DAQ system.

Comprehensive investigations of different reconstruction methods require a large collection
of pulse shapes. A Monte Carlo tool, developed to simulate pulse shapes as recorded by a Grande
station, is described in chapter 5.

The energy deposit can be reconstructed by integrating the pulse shapes. The precision and
accuracy of different integration methods, for equally spaced samples, are investigated. Time-
base errors and amplitude fluctuations are added to the ideal pulses and their contribution to the
reconstruction of the energy deposit is investigated in chapter 6.





Chapter 2

Cosmic Rays

2.1 Introduction

Cosmic rays are high energy corpuscular and electromagnetic radiations, coming from our
galaxy or even from beyond, that permanently hit the Earth’s atmosphere. They mainly consist
of protons (≈ 85%), alpha particles (≈ 12%) and nuclei of different elements with Z ≥ 3 (≈ 3%).
Electrons constitute only about 1% of the number of primary protons. Neutrinos and photons
have been also observed. Antiparticles are very rarely found among the primary cosmic ray
particles. The fraction of antiprotons with energies higher than 10GeV in respect to the flux
of protons amounts to 10−4, while the flux of positrons represents approximately 10% of the
number of electrons at energies around 10GeV [Gru00, Lon92].

In the early 1900’s, T.R. Wilson noticed that an electroscope, at that time a device widely
used to measure levels of radioactivity, discharges even in the absence of a radioactive source.
This leakage of charge was believed to be due to the presence of a background radiation, mainly
coming from the ground. Therefore, in their attempt to reduce this effect, physicists performed
experiments at high altitudes, mainly on the top of the highest buildings or constructions. An
example is the experiment of Thomas Wulf on the Eiffel Tower in 1910, which provided a
reduction of the leakage of about 42%. It was Victor Hess, an Austrian physicist, who discovered
in 1912 that in fact, the radiation was penetrating downward, coming from beyond the atmos-
phere. He used a balloon to ascend to higher altitudes, while repeatedly measuring the leakage.
He found that the leakage was first reducing, but after 1500m altitude it was more intense than
at the ground level. This was the first evidence of cosmic rays, and for his discovery, Hess was
awarded the Nobel Prize in 1936 [Lon92].

Later, in 1926, Robert Millikan conducted several experiments with balloons which con-
firmed Hess’ discovery and, moreover, he showed that the incoming radiation collides with the
atoms from the atmosphere and produces secondary particles. Millikan named the extraterrestrial
radiation as cosmic rays. That was the beginning of a new era in the field of particle physics. As
a result of cosmic rays researches, Carl Anderson discovered the evidence of the positron in a
cloud chamber in 1932, and, together with Seth Neddermeyer, discovered the muon in 1936.
For the positron discovery he shared the Nobel prize with Victor Hess in 1936. Because the
experiments with balloons were expensive and dangerous, most of the experiments moved to
high altitudes of the mountains. In 1947, Cecil Powell and his group discovered the π −meson,
exposing photographic plates to cosmic rays at 3000m altitude, and, in the same year, Rochester
and Butler discovered the kaon in tracks produced by cosmic rays in a cloud chamber. By the
middle 1950’s, particle accelerators replaced cosmic rays in high energy particle experiments,
but even today cosmic rays provide the most energetic particles ever observed.



4 Cosmic Rays

In 1938, following the experiments of Bruno Rossi, Pierre Auger discovered the extensive
air showers, observing the time coincidence between detectors, placed at large distances. Based
on his measurements, he concluded that the energy spectrum of the cosmic rays reaches up to
1015 eV. Today it is known that the energy spectrum of the primary cosmic rays extends over
many decades of energy. The highest energetic cosmic ray event observed so far has 320EeV
(i.e. Fly’s Eye experiment) [Rao98]. The energy spectra can be represented as the differential
flux, as number of particles in the energy range (E;E+dE), or as the integral flux, i.e. as number
of particles with energies exceeding or equal to E. From various experiments, it was established
that the former can be represented by a power law distribution:

dN
dE

= E−γ , (2.1)

where γ represents the spectral index that determines the slope of the distribution [Lon92]. Fig-
ure 2.2 shows the differential energy spectra of the primary cosmic rays, as they were measured
by different experiments. In the PeV region the energy spectrum flattens, the spectral index γ
changing from 2.7 to 3.1. This is usually referred to as the knee of the energy spectrum. In the
region of 10 EeV the energy spectrum becomes steeper again, determining the so called ankle.
The spectral index changes back to its initial value.

Both the knee and the ankle were confirmed by many experiments at different atmospheric
depths, but the cause of the sudden change in the exponent of the power law energy spectrum has
not been clearly understood yet. There are several theoretical models that try to explain the knee,
based either on astrophysical reasons, like the effects of the cosmic ray transport through the
interstellar medium, or on the assumption of a change of the hadronic interaction mechanisms.

The experimental results pointed to a change in the chemical composition of the primary
spectrum. It has been observed that, above the knee, the flux of light particles decreases such,
that at high energies the spectrum is dominated by heavy particles. It is expected that the knee
energy is rigidity dependent [Rot03]:

EA
knee = Z ·E proton

knee . (2.2)

Since the flux of protons is the largest among the cosmic ray particles, the knee they cause
is distinct, at about 5PeV. Therefore, the iron knee is expected to be found around 0.1EeV.

Cosmic rays can be detected in several ways, depending on the energy of the primaries.
Since low energy cosmic rays are absorbed in the Earth’s atmosphere, airborne cosmic ray de-
tectors are carried in balloons at high altitudes, where they can remain aloft for days. Experi-
ments like CAPRICE (1998) measured fluxes of particles between 3÷350 GeV [Moc03]. The
space based detection technique involves cosmic ray detectors mounted on research space sta-
tions to record events, while the station orbits the Earth. The ground-based detection techniques
are the most widely used. Cosmic rays with energies beyond 100TeV are studied via the ex-
tensive air shower they produce in the atmosphere. Large detector arrays are used to sample the
secondary particles generated by the collision of the primary cosmic ray with the atmospheric
nuclei. KASCADE-Grande is such an experiment and more details about its aims and results
are provided in chapter 3. Using large telescopes, it is possible to detect the Cherenkov radiation
emitted by the electromagnetic showers, like e.g. the HESS experiment does [Hin04].

2.2 Extensive Air Showers

When the primary cosmic ray undergoes nuclear collisions, high in the atmosphere, a large
number of secondary particles is produced. These particles can decay or further interact with



2.2 Extensive Air Showers 5

23

23.5

24

24.5

25

25.5

26

11 12 13 14 15 16 17 18 19 20 21

log(ENERGY in eV)

lo
g

(F
L

U
X

 *
 E

3 
 in

 e
V

2 m
-2

s-1
sr

-1
)

Figure 2.1: The differential energy spectra of primary cosmic ray particles for energies exceeding
0.1TeV, as measured by several experiments. The knee occurs in the PeV region, while
the ankle is observed in the 10 EeV region. Both scales are logarithmic and the flux is
multiplied with E3 [Nag00].

other atmospheric nuclei, such that a cascade of particles develops in the atmosphere. The numb-
er of particles produced in an extensive air shower (EAS) is directly related to the energy of the
primary cosmic ray particle and keeps increasing with the propagation of the shower front until
the shower development reaches a maximum.

The shower development depends on several competitive processes, like particle production,
decay, ionization loss and absorption. The mean energy of the particles in the shower decreases
as the shower develops in the atmosphere, i.e the mean energy decreases with the increase of
the depth. When the energy falls below the threshold for production of additional particles, the
energy will gradually be lost by ionisation and other processes. If the primary cosmic ray is a
very energetic photon, then the shower develops mainly into an electromagnetic component, of
which dominat effects are the pair production and bremsstrahlung. The average total number of
electrons is given as a function of the atmospheric depth (t), measured in radiation lengths:

Ne(E0, t) =
0.31√

β0
exp

[

t

(

1−
3
2

ln s

)]

, (2.3)

where E0 is the energy of the primary photon, s ' 3t
t+2β0

and β0 = ln(E0/ε0). The quantity ε0

defines a critical energy (84.2MeV) for the electrons in air, at which the ionization process
becomes the predominant interaction for the electrons [Gre56].

The lateral distribution of the extensive air shower increases as a function of depth, and
depends upon the energy and the type of the primary particle. The following formula, known as
Nishimura-Kamata-Greisen (NKG) function, describes the particle density ∆(Ne,r) per m2, at a
certain distance r (in a plane perpendicular to the shower axis):

∆(Ne,r) =
Ne

2πr2
0

Γ (4.5− s)
Γ (s)Γ (4.5−2s)

(

r
r0

)(s−2)(

1+
r
r0

)s−4.5

, (2.4)
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where Γ represents the Gamma function, Ne is the shower size, s is the age parameter, and r0

is the Molière radius. The age s is a parameter that characterizes the status of the shower devel-
opment (s = 0 at the first interaction, s = 1 at the shower maximum), while the Molière radius
determines the lateral spread of particles in the shower, as a result of the multiple collisions they
undergo in the atmosphere. The number of electrons and muons produced in the shower can be
obtained by using the NKG function to fit the experimental data.

Figure 2.2 shows a schematic representation of an extensive air shower developing in the
atmosphere. The particles of the shower travel almost with the speed of light down to Earth,
within a pancake-like shaped volume with a thickness of a few meters. The shower front mainly
consists of muons and electrons, while the hadrons arrive delayed due to their larger mass. The
zenith angle (θ ) is measured from the time delay between the different detectors [Lon92].

2.2.1 The Hadronic Component

The hadronic component of the extensive air shower consists of pions, kaons, protons, neutrons
and nuclear fragments. The most abundant are the charged and neutral pions (π±,π0). They are
high energetic and unstable, with short mean life times, of 2.5 · 10−8 s (π±) and 1.8 · 10−16 s
(π0) [Lon92]. The neutral pions decay almost immediately after they are produced. In this way,
a large part of the hadronic energy is transferred to the electromagnetic component (see equa-
tion 2.9). The longer life time of the charged pions gives them the opportunity to undergo further
nuclear interactions and to increase the size of the hadronic component. But, most of them are
likely to decay into muons and the corresponding neutrinos (see equation 2.5), therefore re-
ducing the number of hadrons present in the shower to 1% from the total number of particles
created.

2.2.2 The Muon Component

The muon component of the air shower is the most penetrating. It results mostly from the decay
of the high energy charged π-mesons and kaons, and with a very small probability from the
photonuclear processes:

π± → µ± +νµ(νµ) , (2.5)

K± → µ± +νµ(νµ) . (2.6)

Since muons do not undergo strong interactions, but only lose part of their energy by ioni-
zation, the muon component will not suffer significant attenuation during the shower expansion.
The low energy muons may decay into electrons, positrons and muon neutrinos:

µ+ → e+ +νe +νµ , (2.7)

µ− → e− +νe +νµ . (2.8)

Due to the very small cross section, the flux of neutrinos is not at all attenuated in the
atmosphere.

2.2.3 The Electromagnetic Component

The electromagnetic component of an extensive air shower is given by the electrons, positrons
and γ-ray photons. The pair production is the dominant effect, due to the energies involved. If
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Figure 2.2: Schematic representation of an extensive air shower: the separation of the shower
components (a) [Gri01], and the shower development in the atmosphere (b) (modified
from [Bra01]).

the particle initiating the shower has hadronic nature, then the electromagnetic component is
mainly generated by the decay of the neutral π-meson into two photons:

π0 → γ + γ . (2.9)

The two high energy photons cause pair productions in the fields of the atmospheric nuclei or
electrons. The created electrons and positrons either lose their energy by ionizing interactions,
or undergo bremsstrahlung and emit photons. The photon can further produce another e−e+ pair,
if its energy is sufficient (at least twice the rest mass of the electron). Therefore, the result is a
cascade of electrons, positrons and photons which increases in size as it propagates down in the
atmosphere. The photoelectric and Compton effects may appear only at energies lower than a
few MeV, therefore their contribution is minimal.

The lateral distribution of the electromagnetic component is mainly due to multiple Coulomb
scattering encountered by electrons and photons with the air nuclei. Also, the pair production
and bremsstrahlung contribute to the lateral spread of the secondary particles with respect to the
shower axis, but this contribution is rather small.





Chapter 3

The KASCADE-Grande Experiment

KASCADE-Grande is an extensive air shower experiment, located on site of the Forschungs-
zentrum Karlsruhe at latitude 49◦ north, longitude 8◦ east and at 110 m above sea level. It is
a ground-based multi-detector setup, comprising the KASCADE (KArlsruhe Shower Core and
Array DEtector), Grande and Piccolo arrays, the central detector and the muon tunnel. The aim
of the experiment is to measure the cosmic ray primary energy spectrum and chemical compo-
sition in the energy range 100TeV− 1EeV, especially in the knee region of the spectrum. The
KASCADE experiment, in operation and taking data since 1996, is sensitive in the energy range
100TeV−10PeV. According to the data observed by KASCADE, the position of the knee shifts
to higher energies with the mass of the primary. A separation of the primary particle spectrum
into its chemical composition gives rise to the expectation that the iron knee may be identified at
Eknee ≈ 0.1EeV.

Since the flux of primary particles decreases at higher energies, the active detection area
has to be increased accordingly. The extension of the KASCADE experiment to the present
KASCADE-Grande experiment, provides the opportunity to observe data in the energy range
10PeV− 1EeV. This allows to discover the possible existence of a break in the iron spectrum
(see e.g. [Hau03]).

3.1 The KASCADE Setup

The KASCADE setup consists of three main parts: the detector array, the central detector
and the muon tracking detector. They allow simultaneous measurements of the electromagnetic,
muon and hadronic components of the extensive air showers.

The detector array consists of 252 detector stations distributed over an area of 200×200m2.
It is organized in clusters of 16 stations, the four inner clusters comprising only 15 stations
(see figure 3.2). Each cluster acts like an autonomous unit which can trigger and digitize data
independently. Except the stations from the inner clusters, each station is equipped with two
liquid scintillator detectors to ensure the measurement of the electromagnetic component of the
extensive air shower. Light guides collect and trace the scintillation light to photomultipliers. In
order to prevent oxidation, the detector is filled with argon. The detectors from the inner clusters
have two additional liquid scintillators installed and no muon detector.

Additionally, below the liquid scintillators, a lead/iron absorber and a plastic scintillator are
employed to detect the muon component (see figure 3.1). The energy threshold for vertical in-
cidence of the electromagnetic component is 5MeV, while the absorber corresponds to 20X0

(radiation length) and demands an energy threshold of 230MeV. The mean energy deposit of
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Figure 3.1: A profile view of a KASCADE detector station. The outer clusters have two e/γ detectors
installed on the top of a lead/iron absorber and a muon detector. The inner stations have
four e/γ detectors and no muon detector [Eng03].

the minimum ionizing particle (m.i.p.) was found to be 12MeV, and energy resolution measure-
ments achieved about 8% for the m.i.p. deposit [Eng03].

The central detector, positioned in the middle of the KASCADE array, comprises several
types of detectors. The hadron calorimeter measures and provides data about the hadronic com-
ponent of the extensive air showers.

Detector Particle Total area (m2) Threshold

KASCADE:
Array, liquid scintillators e/γ 490 5 MeV
Array, plastic scintillators µ 622 230 MeV
Muon tracking detector, streamer tubes µ 128×4 layers 800 MeV
central detector:

Calorimeter, liquid ionization chambers h 304×8 layers 50GeV
Trigger layer, plastic scintillators µ 208 490MeV
Top cluster, plastic scintillators e/γ 23 5MeV
Top layer, liquid ionization chambers e/γ 304 5 MeV
Multi-wire proportional chambers µ 129×2 layers 2.4GeV
Limited streamer tubes µ 250 2.4GeV

Grande e/µ 370 3MeV
Piccolo e/µ 80 5MeV

Table 3.1: Detector components of KASCADE-Grande, their total sensitive areas and thresholds for
vertical particles [Eng03, Kam03] .
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Figure 3.2: Schematic layout of the KASCADE array. The central detector is placed in the middle
of a 252 detector station array. The array is arranged in 12 outer and 4 inner independent
clusters. An electronic station, placed in the middle of each cluster, supplies the high voltage
for the electronics of the detectors, collects and digitizes the data from each detector station
of the cluster [Eng03].

It mainly consists of one lead absorber layer (filters the electromagnetic component), and
8 layers of iron interspaced with 9 layers of warm-liquid ionization chambers. A trigger plane
consisting of plastic scintillators, is placed below the third absorption layer in order to meas-
ure the arrival time distributions of the muons. Below the calorimeter, a system of multi wire
proportional chambers (MWPC) and limited streamer tubes (LST) are employed to measure the
positions and the angles of the incoming muons with energies higher than 2.4GeV.

The muon tracking detector has an effective area of 128m2 and is installed underground,
north of the central detector. It consists of three layers of streamer tubes, which allow to recon-
struct the tracks of charged particles that cross the detector. Therefore, the size and the lateral
distribution of the muon component can be determined.

A summary of the detector components of the KASCADE array is presented in table 3.1.

3.2 The Grande Array

The Grande array consists of 37 detector stations from the former EAS-TOP cosmic ray exper-
iment (running between 1987 and 2000 at Campo Imperatore, Gran Sasso Laboratories, Italy).
It covers a larger detection area than the KASCADE array, of about 700×700m2. Each Grande



12 The KASCADE-Grande Experiment

x/m

−700 −600 −500 −400 −300 −200 −100 0 100

y/
m

−700

−600

−500

−400

−300

−200

−100

0

100

KASCADE
MuonTracking
DetectorCentral

DetectorPiccolo

KASCADE−Grande

26

31
3032

36 35 34

25

Figure 3.3: Schematic layout of the three components of the KASCADE-Grande experiment. The
Piccolo array is placed near the center of the Grande array to create a trigger signal for
the Grande and KASCADE components. The Grande array is arranged in 18 overlapping
hexagonal clusters to ensure the 4 or 7-fold coincidences. The figure gives the example of
five overlapping clusters (modified from [Hau03]).

station is equipped with 16 NE102A plastic scintillators (80×80cm2 active detection area each,
and 4cm thickness), arranged in a 4× 4 array. To each of these 16 scintillators, a pyramidal
optical guide is attached to trace the light to a photomultiplier of the type XP3462. The pho-
tomultipliers operate at high gain mode, in a voltage range from 1500V to 2500V, and ensure
the timing and low particle density measurements. The 16 photomultiplier pulses are added up
by means of a mixer device. The resulting pulse is split in two different signals: one is discrim-
inated in the detector station and used to trigger the station (logic run signal), and the other is
sent through shielded cables to the Grande DAQ, where is digitized in peak sensing ADCs.

Additionally, each of the four central scintillators is equipped with a second photomultiplier
of the same type, operating at low gain mode, in a voltage range from 1200V to 1600V. Their
aim is to ensure the high particle density measurements. Measurements performed in the Grande
stations resulted in a mean energy loss of about 10.3MeV, for muons passing through the de-
tector under a mean incidence angle of 36.9◦. Multiplying this mean energy with the cosine
of the considered angle, an 8.2MeV mean energy loss per vertical minimum ionizing particle
(m.i.p.) is obtained [Agl93]. The dynamic range achieved is 0.3 to 750 m.i.p./10m2 for the high
gain channel, and from about 12 to 30,000 mips/10m2 for the low gain channel [Ber01].

For trigger purposes, the Grande array is arranged in 18 hexagonal clusters, with an average
distance between stations of about 137m. Each cluster comprises 7 detector stations, i.e. one
station positioned in the center of the hexagon and the other six around it. Another feature of
this arrangement is that each station is part of up to seven clusters (see figure 3.3).

When a Grande station detects a particle in the detector, a single particle event is triggered,
and a logic run signal is sent to the Grande DAQ station. If more stations detect particles, in
coincidence, then the Grande array triggers an air shower event. Apart from the situation when
the array may be externally triggered, i.e by Piccolo component (see section 3.3), a cluster of
the Grande array triggers only in the following two cases:
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• a four-out-of-seven (4/7) coincidence: coincidence between the logic run signals of the
central station of the cluster and three neighbouring peripheral stations, such that a par-
allelogram is formed. Taking the example given in figure 3.3, the cluster with the station
number 31 as central station, a 4/7 coincidence is available, if it is triggered by the stations
31, 30, 25 and 26, but not by the stations 31, 30, 25 and 32.

• a seven-out-of-seven (7/7) coincidence: coincidence between all the logic run signals of
the cluster.

Also, the 7/7 coincidence will be an external trigger for the other components of the experi-
ment and the data will be sent to the KASCADE DAQ station. Events with only 4/7 coincidence
will be locally stored on the Grande DAQ PC’s. Apart from its internal trigger, the Grande data
aquisition is also triggered by the Piccolo array and the other components of the KASCADE-
Grande experiment.

3.3 The Piccolo Trigger Array

The Piccolo array consists of 8 detector stations (see figure 3.3) from the former KARMEN
neutrino experiment. They form an octagon placed at about 20m from each other. Each station
is equipped with 12 scintillator plates with 10m2 detection area. The Piccolo array is positioned
between the Grande and KASCADE detection centers, and its main aim is to provide a fast
external trigger signal, in order to ensure common data taking for the two arrays. This increases
the trigger efficiency and the density measurements for each shower.





Chapter 4

The FADC System

With the current Grande data acquisition system, a 500 µs dead time occurs after each shower
event. When a coincidence condition is fulfilled (see chapter 3), a trigger is generated, and the
read-out of the data from each Grande station starts. During this procedure, no other event can be
recorded. On the other hand, the data recorded for each detector station contains no information
about the energy development in time. First, the photomultiplier signal is integrated by a shaping
amplifier during a period of 8 µs, and a pulse is generated with an amplitude proportional to the
integrated charge of the signal. Then the signal is sent to the Grande DAQ station, where a peak
ADC extracts the value of the amplitude, which is proportional to the energy deposit during the
event. In addition to this information, a TDC hit is included, which provides information only
about the time, when the signal has crossed the threshold.

A new FADC DAQ system, that improves the data quality of the KASCADE-Grande ex-
periment, is currently under development. It is a free-running and self-triggering system, based
on digitizer boards in each Grande station. The mixed photomultiplier pulses are digitized with
zero dead time and sent via an optical fiber to the Grande DAQ station. A system of storage
boards receives and writes the data to a ring buffer, from where a master PC selects of the single
particle events, that takes place in coincidence. The new FADC DAQ system will be installed
in parallel with the current system in the Grande array. It will provide digitized pulse shapes,
that contain information about the energy deposits and their development in time, and give the
opportunity to reconstruct other parameters of the air showers. The components of the FADC
DAQ system are given in the following:

• 37 KGEMD (KASCADE-Grande Electromagnetic Detector Digitizer) boards, which are
going to equip the Grande stations,

• 5 KGEMS(KASCADE-Grande Electromagnetic Detector Storage) boards, which will
be installed in the Grande DAQ station,

• 5 first level PCs, which will be also installed in the Grande DAQ station,

• 5 KGEMP (KASCADE-Grande Electromagnetic Detector PCI Interface) cards, to be
mounted in the first level PCs as the interfaces to the KGEMS boards,

• 1 master PC, also to be installed in the Grande DAQ station,

• 1 KGEMT card (KASCADE-Grande Electromagnetic Detector Trigger Receiver) card,
to be mounted in the master PC.
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4.1 The Digitizer Board

Each of the 37 Grande stations will be equipped with one digitizer board (KGEMD), that pro-
cesses the high and low gain signals and transmits the generated data packets to the central DAQ
station. As mentioned in chapter 3, each of the 16 scintillators of a Grande station is viewed
by a photomultiplier, operating in high gain, for timing and low particle measurements. Each of
the four central scintillators are viewed by an additional photomultiplier, operating in low gain,
for timing and high particle measurements. The individual photomultiplier signals are summed
to one high gain and one low gain signal [Chi03]. The resulting signals feed two separate in-
puts of the KGEMD board, by which they are digitized with an effective sampling frequency of
250MHz.

The digitization is performed by eight FADCs1 such, that each input signal is digitized by
four cascaded FADCs. Each FADC has a resolution of 12 bits and a sampling rate of 62.5MHz,
and is driven by an onboard quartz oscillator2. The analog input signal is split and distributed
to the four FADCs. The sampling frequency ensures that each FADC samples the input signal
every 16ns. To achieve an effective sampling rate of 250 MHz, the four FADCs are interleaved
in time. The 62.5MHz clock signal is split into four channels which are delayed such, that the
input signal is digitized by one FADC every 4ns.

The architecture of a 12-bit FADC (4096 channels) employs 4095 comparators, which simul-
taneously compare the analog input signal with an equally distributed threshold voltage at their
inverting inputs. The output of the comparators is collected by a digital encoder that determines
the digital output code, which corresponds to the ADC channel in which the sampled analog
voltage is binned. This ensures a fast conversion of the analog input.

The FADCs digitize the input signals continuously, but the read-out is started only when the
high gain signal exceeds a certain threshold value. This restricts the transmission of data, only
to that being of interest. The digitization period lasts for 63 clock cycles, which corresponds to
1.008 µs. If the analog input signal exceeds the threshold value in the last 200ns of the digiti-
zation period, the data acquisition is prolonged for another microsecond. The data from each
FADC is buffered in a FIFO such, that the digitization and the data transmission are independent
processes. A new event can be digitized, while the previous one is still being transmitted. This
ensures a free running system with zero dead time. The multistage pipelined architecture of the
FADCs allows to store samples during a certain amount of clock cycles. This permits to recover
samples, digitized before the high gain signal which triggered the read-out, that are necessary
for the determination of the pedestal (see figure 4.1).

The data is transmitted in packets to the Grande DAQ station via an optical link. Each data
packet has a fixed size and consists of 512 words, which results in a total size of 1,024 bytes.
The structure of a data packet consists of:

• 2 magic words, headers which define the beginning of the data package,

• 1 word defining the Grande station number,

• 252 words containing the digitized samples of the high gain signal,

• 252 words containing the digitized samples of the low gain signal,

• 5 words containing the timestamp information.

1Analog Devices, AD9238
2EPSON, SG-8002JC series
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Figure 4.1: Schematic view of the FADC system. The high gain signal exceeds a certain threshold
value and read-out is enabled. The digitization period lasts for 1.008 µs. The pipelined
architecture allows to recover samples digitized before the threshold to be crossed. The data
taking is extended if the high gain signal exceeds again the threshold in the last 200ns of the
digitization period. The digitized data are transmitted via optical link to the Grande DAQ
station [Ove04].

The time stamp information consists of one word containing the 1Hz counter value, two
words containing the 5MHz counter value and another two words containing the 62.5MHz
counter value. The 1Hz and 5MHz signals are incremented with every cycle of the central
timestamp distributor, as received by the KGEMD board via an optical link. The 62.5MHz is
incremented by the internal clock of the KGEMD board. Both the 5MHz and 62.5MHz counters
are reset at the reception of the 1Hz signal.

4.2 The Storage Board

As previously mentioned, the central Grande DAQ station will be equipped with five VME
storage boards (KGEMS). Their role is to receive and multiplex the data streams, packet-by-
packet, from the 37 Grande detector stations, and to transfer the resulting data packets to the
five first level PCs. The KGEMS board does not change or add information to the received data,
since all the necessary information is already included in the data packets sent by the KGEMD
board.

Each board has 8 input channels (optical link receivers) which ensure the reception of data
packets from up to 8 detector stations (see figure 4.2). The data streams, received from the input
channels, are buffered in a FIFO, which can store a maximum of 32 data packets. Then, the data
is sent to an FPGA (Field Programmable Gate Array) that multiplexes the data streams. The
resulting data stream is buffered into one common output FIFO, with a larger buffering capacity
(128 data packets), and then it is sent to the first level PCs, via an LVDS cable connection.

Also, for test or debugging purposes, a VME bus interface is available on the KGEMS board.
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Figure 4.2: Schematic view of the receiver chain of the FADC system. Five storage boards receive data
packets from 37 detector stations. The multiplexed data packets are send, via PCI interface
to the first level PCs. These PCs collect and transmit the timestamp information to the master
PC, which scans for coincidences and requests data about the interesting events [Ove04].

4.3 The First Level PCs and the PCI Interface Card

Five first level PCs collect, via PCI interface cards (KGEMP), the data transmitted by the storage
boards. The PCs act as ring buffers, writing data to their internal memory. Each first level PC is
going to be equipped with 1GB of memory, of which only 128MB will be used by the operating
system. The remaining 896MB are used to temporarily store the data. The first level PCs collect
the information from the received data packets, i.e. the timestamps, the station numbers and
the ring buffer positions of the data packets, and transmit it to the master PC. Also, the online
software installed on each first level PC, performs the integration of the received pulse shapes, in
order to obtain the energies of every single pulse, which will be filled into histograms to provide
the energy spectra.

The KGEMPs are commercial PCI interface prototyping cards3, which are connected
through custom-made cards to the KGEMS boards. Their task is to transfer the data, via direct
memory access, to the ring buffers, which are later accessed by the online software. A schematic
view of the receiver chain is shown in figure 4.2.

4.4 The Master PC

The first level PCs store the full data for approximatively 45 seconds. The master PC checks the
timestamps, as received from the first level PCs, in order to detect coincidences. A coincidence

3HK Meßsysteme GmbH, PCI-Proto-Lab
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is defined by a certain number of single station events during a constant time window. When
these requirements are fulfilled by certain events, the master PC requests the corresponding data
packets from the first level PCs, and writes the data of air shower events to storage.

4.5 The Trigger Receiver Card

The KGEMT card is a custom-made trigger receiver PCI card, which is going to be installed in
the master PC. Its task is to provide the interface to the central KASCADE-Grande trigger dis-
tributor. The master PC checks the trigger signal as part of the event finding conditions. This al-
lows the FADC system to provide data for events triggered by other components of KASCADE-
Grande, such as Piccolo or the KASCADE array. The KGEMT card provides inputs for the 1Hz
and 5MHz signals of the KASCADE-Grande timestamp distributor, as well as for the central
trigger signal. Also, it is equipped with a Global Positioning System (GPS) receiver, in order to
set an exact time for the 1Hz counter.

4.6 Conclusions

The new FADC DAQ system has the following advantages:

• it provides digitized photomultiplier pulse shapes containing information about the time
development and the energy deposit. Additional parameters of the air shower event may
be extracted from the pulse shapes;

• it is a free running system, ensuring zero dead time (longer events are completely
sampled);

• it is a self-triggering system (in each station), with no hard-wired trigger conditions. The
current Grande data acquisition system transmits data through 700m long cables, favoring
the noise interference;

• full data is available in the ring buffers of the first level PCs for 45 seconds, for the search
of correlated single station events;

• it collects each single detector event and performs fast acquisition of the calibration spec-
tra.

The only disadvantage of the FADC DAQ system is that it cannot provide a hardware trigger
signal to the central KASCADE-Grande trigger distributor. Since the event selection is done by
software, no electrical trigger signal can be generated at the time the event has been created.





Chapter 5

Monte Carlo simulation

Cosmic rays with energies beyond 5 ·1014 eV can be studied via the extensive air showers (EAS)
they induce in the atmosphere. Large ground-based detector arrays are used to sample the sec-
ondary particles generated by the collision of the primary cosmic ray with atmospheric nuclei.
The detectors allow the measurement of signal shapes, whose properties are related to the phys-
ical observables of interest. Therefore, the characteristic properties of the observed extensive air
showers can be reconstructed. By extracting the number of particles, that are incident on the
array, and the corresponding energy deposits in the detectors, the number of particles created in
the air shower and the primary cosmic ray energy can be estimated. Also, the arrival times of the
particles in the detector can be used to determine the inclination of the shower.

The FADC system improves the data quality of the KASCADE-Grande experiment sig-
nificantly (see chapter 4). In order to profit from this improvement, the development of fast
and efficient reconstruction algorithms for the FADC data is mandatory. A rigorous study of
the impact, that the FADC characteristics, e.g. resolution and sampling frequency, have on the
accuracy of the measurements is the aim of this thesis. Comprehensive investigations of different
reconstruction methods require a large collection of pulse shapes.

One possibility to create such a library of pulse shapes is to use CORSIKA (COsmic Ray
SImulations for KAscade) [Hec98] for a complete shower simulation and CRES (Cosmic Ray
Event Simulation) for a detector response simulation. This full simulation chain consumes a
large amount of time. To simulate showers, generated by primaries with energies of 1018 eV, up
to one week per event is required. Therefore, it was decided to develop a faster tool, a Monte
Carlo simulation that can create similar pulse shapes to those simulated by the the previously
mentioned full simulation chain. Due to the lateral shower development, the particles arrive
within several hundreds of meters from the shower axis. Thus the density of particles, that strike
a detector, varies. The shapes of the measured pulses will vary accordingly, from a very high
and narrow peak at close range, to an erratic form at larger distances. Therefore, three classes of
signals depending on the position of a detector with respect to the shower core, were simulated:
close to the shower core, far from the shower core and at relative distance. A library of pulses,
consisting of 20000 events in the far from the shower core class and 10000 events in each of
the other two classes, was produced. An event represents a recorded pulse during an acquisition
time interval of 1 µs.

The present Monte Carlo tool simulates pulse shapes as response of only one detector, i.e.
one Grande station, and not of the whole array. The intention is to concentrate on the pulse
shape reconstruction and not on the reconstruction of the full air shower event. Furthermore,
the individual characteristics of the electronics in the different Grande stations influence the
data quality. The later analysis will be based on a model, that ranges from ideal to very noisy
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situations and covers some of the particular effects of each Grande station (see chapter 6).
The Monte Carlo simulation will be described in detail in the following sections.

5.1 Underlying Signal and Single Particle Event Simulations

In general, Monte Carlo algorithms are stochastic methods employed to describe a real process.
In order to develop a successful Monte Carlo simulation the processes involved have to be well
known. Earlier measurements performed at the Forschungszentrum Karlsruhe helped to define a
norm function for the signal. An experimental set-up consisting of a scintillator paddle (Grande-
like scintillator) placed between two scintillating plates (to ensure the trigger condition) was used
to measure the signal of incoming vertical muons [Bad03]. The area of the scintillating plates is
about 20–30 cm2 and they were placed such, that the total arrangement was not taller than 1 m.
This ensured a small solid angle for the measurement of the incoming muons. A light guide and
a photomultiplier tube (PM) were attached at one of the paddle’s lateral ends.

When a particle interacts with the scintillator material, an amount of scintillation light pro-
portional to the energy deposited in the detector is produced. This light is optically guided to the
photomultiplier, which produces a current pulse proportional to the number of photons. In this
way, the signal properties are related to the physical processes that are measured. By integrating
the current pulse with an electric circuit with a time constant τ , a voltage pulse can be obtained.
During the measurements, about 200 such photomultiplier signals fulfilling the coincidence con-
dition were recorded with a digital oscilloscope of 2 ns resolution. The obtained photomultiplier
signals were averaged and the resulting data points were described by the following parameter-
ization:

U(t) = −
k ·Edep

τ − τs

(

e−
t

τs − e−
t
τ

)

, (5.1)

where k is proportional to the PM gain, τs is the scintillator decay constant and τ = RC (for a
simple RC integrator).

Since the incoming vertical particles do not have the same momenta, the energy deposited in
the paddle fluctuates. This leads to different measured pulse shapes. By averaging these pulses
and taking the detector thickness (4 cm) into account, an 8 MeV mean energy deposit was
assumed. This value corresponds to the minimum energy that an incoming vertical particle is
able to deposit in the scintillator. Both the parameterization and the energy deposit (8 MeV) are
presently implemented in the CRES detector response simulation.

Figure 5.1 shows the fit results of this parameterization to the averaged data points. The
function does not describe the data and especially the upper points very well. The fit results have
large errors. Theoretically, the decay constant of the NE102A plastic scintillator, used in the
Grande station, is 2.4 ns [Leo93], while the fit returns a four times larger value. Besides these
fit errors, detailed studies [Hus03] have shown that, applying fluctuations and using the function
from equation 5.1 to fit the data points, in some cases one of the exponentials dominated the fit
and the parameterization was reduced to a simple exponential which obviously failed to describe
the data well.

Therefore, this parameterization was replaced by the Landau distribution. Later studies
proved, that the Landau distribution is stable and describes the data better (see figure 5.2). This
holds for the data points on the leading edge as well as for the upper points which are better
described. In these simulations, the Landau function implemented in the ROOT physics analysis
package [Bru97] has been used. This function is characterized by the most probable value and
the width. It has been adapted from the CERNLIB routine G110 DENLAN [Köl93].
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Figure 5.1: Fit of the experimental data points with the parameterization given in equation 5.1. The fit
parameter const represents the scale factor, while tshift is a parameter introduced to ensure
the fit of the data points on the leading edge.

Adopting the new parameterization, a Monte Carlo was developed to simulate photomulti-
plier pulses generated by single vertical muons. Assuming that the Landau distribution is a per-
fect description of the pulse of a single particle, and neglecting energy fluctuations, the FADC
performance can be estimated.
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Figure 5.2: Fit of the experimental data points with the Landau function.
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First, the measured data points were fitted with the Landau distribution. Then, the fit pa-
rameters were extracted and used to define the basic true signal. In order to simulate the lack
of a correlation between the arrival time of the photomultiplier pulse and the clock signal, that
drives the A/D converter, the simulated signals were shifted in time with random offsets. This
time uncertainty is smaller than the sampling interval of the A/D converter. Assuming the char-
acteristics of the FADC described in the previous chapter, e.g. an effective sampling frequency
of 250 MHz, the offset was randomly generated within a time interval of 4 ns.

The effect of white noise, equally distributed over the whole frequency spectrum, was also
considered. First, the baseline of the signals was shifted in amplitude by a constant pedestal in
order to avoid negative amplitudes when white noise is applied. Then, because the amplitude
of the white noise is described by a normal distribution, the constant pedestal was smeared in
amplitude with this distribution. Any such a realistic signal is a hypothetical single particle
event.

The signals were evaluated at every 4 ns and, considering the 12-bit resolution of the FADC,
the corresponding amplitudes were binned into 4096 discrete intervals. The resulting data points
were fitted with a parameterization defined by a Landau function and a constant pedestal. The
fit results represent the reconstructed values and the comparison with the true values is done by
dividing their difference by the true values, which results in the R-values:

R =
reconstructed − true

true
. (5.2)

Now the impact of the FADC characteristics on the accuracy of the measurement can be
studied. Assuming that the area below the pulse describes the energy deposit, a true energy is
considered by integrating the true signal. For each generated single particle event a reconstruct-
ed energy is defined by integrating the pulse and subtracting the constant pedestal. By applying
equation 5.2, the quality of the energy reconstruction can be estimated.

The time resolution is another criterion for the quality of a measurement. It defines the pre-
cision with which the time characteristics of a signal could be determined. In these simulations,
the true time of the pulse, i.e. the arrival time, is considered to be defined by the most probable
value of the Landau function. The digitized values are fitted with a parameterization defined by
the Landau function and a constant pedestal. From the fit results, the most probable value can be
extracted. A reconstructed time can be obtained by subtracting the randomly generated phase,
between the arrival time of the pulse and the FADC clock signal, from the most probable value of
the fit. Then, the residuals are obtained by subtracting the true time from the reconstructed time.
The time resolution of the measurement is defined as the standard deviation of the residuals.

The four histograms in figure 5.3 show the distributions of the time residuals and the R
values (see equation 5.2) of the integral, width and pedestal variation. An energy resolution of
about 2% and a time resolution of (0.1255 ± 4 ·10−4) ns were achieved (figure 5.3 a,b). In these
simulations the integration was performed with the adaptive Gaussian quadrature method imple-
mented in the ROOT framework. This numerical method employs unequally spaced intervals. In
the subsequent chapter the efficiencies of the integration methods, that employ equally spaced
samples, are investigated.

5.2 The Multi-Particle Event Simulations

In the previous section only single particle events were discussed. It is necessary to extend the
analysis to a scenario, in which many particles distributed over a certain time window penetrate
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Figure 5.3: The time residuals (b) and the R = (reconstructed-true)/true values of the integral (a), width
(c) and pedestal (d) in the single particle event simulations.

the scintillator (see chapter 2). This implies to pile up the single particle pulses given by the
parameterization such, that the combined pulse shape describes the sum of the individual energy
deposits. Applying successively this algorithm, a large collection of pulse shapes may be created.

As already mentioned, there is another possibility to create these pulse shapes, by using the
CORSIKA-CRES simulation chain. One of the reasons to develop a separate tool is the large time
consumption of the simulation chain. Furthermore, the CRES detector response simulation uses
the described parameterization (see equation 5.1), which did not prove to be a reliable solution.
Due to these reasons, a faster tool was developed, that can simulate pulse shapes looking similar
to those created by CRES (fig 5.4).

This tool does not simulate real phenomena in the atmosphere or detector. But, using a
simple model to generate a realistic output, the initial goals can be nevertheless achieved (see
chapter 1). The Monte Carlo does not differentiate between particles, e.g. muons, electrons,
photons, etc., but simulates randomly total energy deposits as a consequence of their interactions
with the detector. The amount of overall energy deposits is related with the particle density
and with their individual energy deposits. The former is randomly generated from an uniform
distribution. Apportioning the overall energy, individual energy deposits, and hence, the number
of particles are created. Additionally, a reference arrival time is assigned to each particle, and
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Figure 5.4: Examples of pulses created by the CRES detector response simulation. The shape of the
signals is strongly influenced by the density of particles that hit the detector. The sharp peak
in the left plot is a result of thousands of particles interacting with the detector within a short
time window. The right plot shows the contribution of several particles distributed over a
larger time window.

the individual contributions are described with the help of a parameterization. When the single
particle signals are piled up, pulse shapes looking like those in figure 5.4 are expected. The shape
of these combined pulses is strongly influenced by the particle density and their distribution in
time. In conclusion, the Monte Carlo is separated in three classes with specific particle densities
and arrival times. The close to the shower core class contains pulses generated by thousands of
individual contributions distributed over a short time window, while the far from the shower core
describes the other extreme, a few or several particles distributed in a much larger time window.
The relative distance class is an intermediate step between the other two classes.

The following subsection presents the Monte Carlo method in more detail and discusses the
obtained results.

5.2.1 The Monte Carlo Description

One of the main features of the photomultiplier tube is its fast time response. This is the time,
in which the anode signal rises from 10% to 90% of the peak amplitude, when the photocathode
is illuminated by a light pulse of a few tens of picoseconds width. In order to ensure a good
description of the photomultiplier signal, the leading edge of the Landau function was replaced
with the tangent in the leading edge’s inflection point, i.e. the point where the function changes
concavity. In figure 5.5 the normal Landau function is plotted with a solid line overlayed with
the dashed line for the new parameterization. The differences on the right hand side of the peak
are minimal (figure 5.5 a), but the rising edge is much better described and the rise time of the
signal is 0.5 ns smaller (figure 5.5 b). The vtp parameter in the statistics box defines the slope
transition point xt p on the leading edge, i.e. the turning point where the truncation was applied:

xt p = mpv−width · vt p . (5.3)

The most probable value (mpv) and the width are given in the same statistics box. Extracting
these fit parameters, a norm function was defined. This is the function, that is going to be used
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Figure 5.5: Fit of the experimental data points with both the Landau function (solid shape) and the new
parameterization (dashed shape). The rising edge is better described by the new parameter-
ization (plot b).

in the further simulations. The area below the shape was considered to describe the norm energy
deposit E1p of a single particle.

The classification of the Monte Carlo requires different particle densities to be considered
in each class. The total energy deposit E total

dep , recorded in the detector during an 1µs event, is
a quantity strongly related with the particle density. In order to generate it, a basic number of
particles Nbasic

part specific to every class was considered. This number is randomly chosen from an
uniform distribution within certain limits. The values implemented in the Monte Carlo simula-
tion for this parameter are given in the table 5.1.

Considering the norm energy, the overall deposited energy is:

Etotal
dep = E1p ·Nbasic

part . (5.4)

Monte Carlo class Nmin
part Nmax

part

f ar f rom the shower core 1 200
at relative distance 150 5000

close to the shower core 2500 104

Table 5.1: Input values of the basic number of particles Nbasic
part .

This overall energy is then randomly distributed such, that the sum of the individual energy
deposits equals the total energy created according to equation 5.4. By randomly choosing an
energy fraction ( fE) from a Gaussian distribution of mean = 1 and width = 2, the individual
energy deposits were generated as follows:

E indiv
dep = 10 · fE ·E1p. (5.5)
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In order to avoid situations, in which one particle gets most of the total deposited energy
Etotal

dep , the individual energy deposit E indiv
dep was limited to 10·E1p . This is a technical implemen-

tation rather than a simulation of a real phenomenon in the detector. The idea was to simulate
pulses looking similar to those created by the CRES detector response simulation. On the other
hand, the energy deposit in a detector at a small distance from the core of an air shower is
very large. The measured photomultiplier signal is very high and narrow and represents the
contribution of thousands of particles striking the detector in a short time window. Therefore a
situation, in which E total

dep is distributed in a very large percentage to only one particle, had to be
avoided.

The algorithm, which distributes the overall energy E total
dep , works like this. At first E indiv

dep, 1

generated by applying equation 5.5 is subtracted from E total
dep such, that a remaining energy E rest

dep, 1

is obtained. If this quantity is positive and non-zero, another E indiv
dep, 2 is created and subtracted

from Erest
dep, 1. The algorithm continues until the E rest

dep, n is either negative or zero. In these cases,

the generated value of E indiv
dep, n is replaced by the previous E rest

dep, n−1. Counting the number of

generated individual energy deposits, a final number of particles N f inal
part is obtained:

Etotal
dep =

N f inal
part

∑
k=1

E indiv
dep, k . (5.6)

The distribution of the resulted N f inal
part in all 3 classes is shown in figure 5.6. Plot (a) shows

the contribution of the far from the shower core class. The number of generated pulse shapes
specific to this class is two times larger, when compared with the other two classes. The range
from which Nbasic

part , and hence, Nbasic
part , is generated is short (see again table 5.1). Therefore, the

probability to generate many times the same number, is large. The probability to have identical
pulse shapes decreases with the increase of the number of particles, that contribute to the pulse.
Except in the case, when only a few particles contribute to the final pulse, individual pulse shapes
are assured. The individual energy deposits are randomly created, which is reflected in the shapes
of the corresponding single pulses. Moreover, to every single pulse a random reference time is
assigned, which shifts the signal along the time axis.

The reference time tk, corresponding to the kth particle of the final pulse shape, is the time,
when the energy contribution of the particle is detected by the photomultiplier. This time is
intrinsically related to the real arrival time of the particle in the detector. Due to the atmospheric
shower development most of the particles produced along its axis are located in the rim of the
shower disk pointing into the direction of the Earth. Therefore most of these particles arrive in
the detector early, while the others arrive with the rest of the shower plane. On the other hand,
the particle density depends on the relative position of the detector with respect to the shower
core. These effects are reflected in the shape of the pulses. At large distances a few particles are
distributed over a considerable time extent, while at small distances the particle density is larger
and the arrival time is distributed over a much shorter time window. In order to simulate this
phenomena, an exponential distribution was chosen to generate the random reference times.

Additionally, two generation parameters α and τc are introduced. The parameter α repre-
sents the mean of the exponential distribution (see appendix A, section A.1). It ensures that the
particles are distributed over different time extents, while the τc parameter defines a time limit
for the spread of the individual pulses such, that:

trndm ≤ τc, (5.7)

where trndm is the time randomly generated from the exponential distribution. Both α and τc are
not fixed parameters, but are randomly generated within certain limits (equation 5.7) and their
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Figure 5.6: The distribution of the number of particles per event simulated by the Monte Carlo algorithm
for each pulse class: far from the shower core (a), relative distance (b), close to the shower
core (c).

limits are distinctive from class to class (see table 5.2).

Monte Carlo class αmin αmax τmin
c τmax

c

[ns] [ns]

f ar f rom the shower core 350 750 600 850
at relative distance 150 350 350 750

close to the shower core 0.1 150 20 350

Table 5.2: Input values of the generation parameters α and τc.

These parameters do not have a clear physical meaning, since in reality a significant contri-
bution of particles may be observed even at 900 ns. But, as it was mentioned in chapter 4, the
FADC system can deal with this kind of events by extending the aquisition time to 2 µs. The
analysis of the obtained pulses will be similar to that of the pulses detected in 1 µs, the main
difference being in the double number of samples.

By using the norm function, the contribution of each particle to the signal can be described.
The function is scaled up or down in amplitude according to the E indiv

dep,k. A scale factor can be
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Figure 5.7: Examples of pulse shapes created with the Monte Carlo tool, and the corresponding time
distributions of the single particles, that form the combined pulse shapes. The number of
entries in the time distribution histograms represents the number of particles, while in the
pulse histograms it denotes the number of bins.
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defined as:

Sk =
E indiv

dep,k

E1p
. (5.8)

Shifting the norm function on the time axis with a certain amount tk, a part of its Landau-
like tail is cut away at the 1µs limit. The function parameters, i.e. the most probable value and
the width, are not affected by this cut, but the area below the shape is changed. The losses are
minimal, e.g. 0.5% for 500 ns time shift. In order to ensure a correct description of the E indiv

dep,k, the
E1p should be replaced by the integration of the shifted pulse. First the norm function is shifted
with a random tk and the area below the shape is evaluated by integrating the shifted pulse over
the 1µs interval. Then the pulse is scaled with the factor:

Sk =
E indiv

dep,k

Ik
, (5.9)

where Ik stands for the value of integration. In this way the individual signals describe the
corresponding energy deposits of the single particle. The next step in the Monte Carlo is the
pile-up of the individual pulses. The pulses are summed and the combined pulse shapes are
saved in ROOT files together with the individual functions and their own parameters (constant,
mean, width, reference time and scale factor). This allows to store continuous functions and to
evaluate them in any point when retrieved. For a better reconstruction analysis the generation
parameters (E indiv

dep,k , α and τc) are stored as well.

5.2.2 Results and Conclusions

Figure 5.7 shows examples of simulated events specific to each class of the Monte Carlo tool.
In each group, the upper plots represent the tk reference time distribution of the single particles,
that form the combined pulse shapes in the lower plots. Each event is simulated in a 1µs time
window. The arbitrary units of the amplitude mean that no calibration was considered.

In the far from the shower core example (figure 5.7 a), the main characteristics of this class,
the low particle density, is well described in both graphs. Several particles, each with a different
contribution in energy, are distributed over a large time extent and the resulting pulse has an
erratic shape. In the relative distance example (figure 5.7 b), the particle density is much higher
and the time distribution is not as flat, but tends to follow the underlying exponential distribu-
tion. The shape of the combined pulse is influenced by this characteristic. The last example,
close to the shower core class (figure 5.7 c), shows a high and narrow signal corresponding to
a large number of particles striking the detector in a short time window. These three examples
emphasize the sensitivity of the detector to different shower core positions.

A large collection, consisting of 20000 specific pulses for the far from the shower core class
and 10000 specific pulses each for the relative distance and close to the shower core classes,
was created. The time consumption is very small when compared with the requirements of the
CORSIKA-CRES simulation chain. Practically, using the present Monte Carlo less than 24 hours
are needed to generate 40000 pulses.

The following chapters are dedicated to an analysis based on this collection of pulse shapes.
Implementing time-base errors and amplitude fluctuations, the impact of the FADC character-
istics on the overall time and energy resolution is investigated.





Chapter 6

Energy Reconstruction

Ground-based detector arrays allow measurements of the extensive air showers, simultaneously
in many points, over a large detection area. The Grande array of the KASCADE-Grande exper-
iment is sensitive to the charged component of the air shower. Muons and electrons represent
the dominant flux of charged secondary particles that contribute to the energy deposit in the
detectors. When these charged particles interact with the plastic scintillators, the energy trans-
ferred will be partially dissipated as heat and mostly absorbed, by the atoms of the detection
material. This latter process rises the atoms into excited states. Neglecting the amount of en-
ergy lost through lattice vibrations, the decay of the excited atoms into a lower energy state is
accompanied by the release of a photon carrying the excess energy. These photons, if not re-
absorbed, i.e. their energy is smaller than the energy needed to produce another excited state,
are optically guided to the photomultipliers. Electrical signals proportional with the number of
photons is then produced. The size of the photomultiplier signals is strongly influenced by the
energy deposit in the detector.

Since the energy deposit is a valuable information for the shower reconstruction [Gla03], it is
very important to know how accurate this information can be retrieved from the photomultiplier
pulses. In this chapter, a study of the energy reconstruction is presented. The ideal pulse shapes
created with the Monte Carlo tool (see chapter 5) are used as input for the investigations. The
area below the pulse shape was considered to define the energy deposit. In order to retrieve it,
the pulse shapes are integrated, such that the result is a quantity in arbitrary units of amplitude
multiplied by time. The precision of the reconstruction and the time consumption of different
integration methods are investigated.

Apart from the integration methods, there are other effects that can affect the quality of the
reconstruction. The digitization of the signals involves inherent quantization losses. The level of
noise, arising from the electronics of the Grande stations or from the surrounding environment,
sets a low limit of accuracy for the quantity to be measured.

6.1 Numerical Integration Methods

As described in chapter 4, the FADC system digitizes the signals every 4ns, which corresponds
to an effective sampling rate of 250 MHz. When the amplitude of the high gain signal exceeds a
threshold value, the read-out is enabled and 252 digitized samples, corresponding to a digitiza-
tion period of 63 clock cycles, are transmitted to the central DAQ station. The photomultiplier
pulses, received from each station, have to be integrated in order to estimate the energy deposit in
the single station. Therefore, the precision and accuracy of different integration methods needs
to be investigated. Since the data acquisition software of the FADC DAQ system has to process



34 Energy Reconstruction

more than 90,000 single station events per second [Ove04], the CPU time consumption is an
important evaluation criterion.

As previously mentioned, the pulse shapes created with the Monte Carlo tool are used as
input for this study. They are ideal pulses, undistorted by any time-base error or amplitude
fluctuations. It is convenient to apply and to interpret the results of different integration methods
applied to ideal pulses. The implementation of any noise characteristic can induce the appearance
of a bias, and the analysis can result in a misjudgement. Unlike the FADC system, which outputs
252 digitized values, the simulated pulses ensure only 251 points for sampling and digitization.

The evaluation of the signals at discrete points, with a fixed time interval, restricts the in-
vestigation to numerical integration methods for equally spaced samples. For this study, the
following classical closed extended formulas were considered:

∫ xN

x1

f (x)dx = h

[

1
2

f1 + f2 + f3 + . . .+ fN−2 + fN−1 +
1
2

fN

]

, (6.1)

∫ xN

x1

f (x)dx = h

[

1
3

f1 +
4
3

f2 +
2
3

f3 +
4
3

f4 . . .+
2
3

fN−2 +
4
3

fN−1 +
1
3

fN

]

, (6.2)

∫ xN

x1

f (x)dx = h

[

5
12

f1 +
13
12

f2 + f3 + . . .+ fN−2 +
13
12

fN−1 +
5
12

fN

]

, (6.3)

∫ xN

x1

f (x)dx = h

[

3
8

f1 +
7
6

f2 +
23
24

f3 + f4 . . .+
23
24

fN−2 +
7
6

fN−1 +
3
8

fN

]

. (6.4)

They are closed formulas because they use the value of the function at the endpoints, i.e.
f1 and fN for a function defined within the range [x1,xN ], and extended because they are built
up from multiple copies of lower order. They belong to a large family of numerical integration
methods, called Newton-Cotes formulas [Pre02].

The first equation is the extended trapezoidal rule. It employs straight lines as interpolating
polynomials between two successive points. The formula can be easily derived by applying
Euclidean geometry. In each interval the two data points are connected by a straight line such,
that the points and their projections on the x-axis form a trapezium. Then the integral is given
by the area of the trapezium:

∫ xi+1

xi

f (x)dx = h
fi + fi+1

2
, (6.5)

where fi and fi+1 represent the evaluations of the function in the points xi and xi+1, and h is the
width of the interval (see figure 6.1 a). This formula is often quoted as the 2-point rule. Applying
equation 6.5 for each interval and using the additive property of the integrals, equation 6.1 is
obtained.

The equation 6.2 is the extended Simpson’s rule [Pre02]. It is an extension to N intervals
of the classical Simpson’s one-third rule (or the 3-point rule), which approximates the integrand
with parabolic arcs (see figure 6.1 b). Thus, the interpolation is performed using three successive
points:

∫ xi+2

xi

f (x)dx =
h
3

[

fi +4 fi+1 + fi+2

]

. (6.6)

The extended formula requires an even number of intervals. This condition is fulfilled by the
251 digitized samples, corresponding to a digitization period of 1µs. Summing the integrations
in each successive pair of intervals, the extended formula is obtained.
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(b) Simpson’s rule

Figure 6.1: Graphical representations of the trapezoidal and Simpson’s one-third rules. The function
is evaluated at discrete points, equally spaced by the interval h. Trapezium rule employs
straight lines as interpolating polynomials between two successive points, while Simpson’s
rule approximates the integrand with parabolic arcs between three successive points.

Equations 6.3 and 6.4 are built up from the combination of different low order rules. Equa-
tion 6.3 is obtained by applying the Simpson’s one-third rule for each pair of intervals within the
range [x2,xN−1], and the trapezium rule in the intervals [x1,x2] and [xN−1,xN ], such that:

∫ xN

x1

f (x)dx = h

[

1
2

f1 +
5
6

f2 +
4
3

f3 +
2
3

f4 + . . .+
2
3

fN−3 +
4
3

fN−2 +
5
6

fN−1 +
1
2

fN

]

. (6.7)

Averaging this formula with the extended Simpson’s rule, the middle terms will have unity
coefficients, and the equation 6.3 – referred in this work to as Averaged Simpson – will be
obtained. Equation 6.4 – referred to as Modified Simpson – is constructed by fitting cubic poly-
nomials through successive groups of four points [Pre02].

The precision of reconstruction of these four integration methods is investigated by applying
the sampling procedure. The simulated pulse shapes are evaluated every 4ns over the 1µs inter-
val. The 251 data points define the input for the integration method. The result of the integration
represents the reconstructed energy deposit, and the comparison with the true energy deposit,
generated by the Monte Carlo simulation, is done by dividing the energy differences by the true
energy deposit:

R =
Ereconstr

dep −Etrue
dep

Etrue
dep

. (6.8)

The relative energy differences (the R values in the above equation) are filled into histograms
and the expected result should be distributed according to a normal distribution with the mean
value centered at zero. The obtained histograms are fitted with a Gaussian function.

Figures 6.2 and 6.3 show the relative values for all three classes defined in the Monte Carlo
algorithm. The extended Simpson’s rule and the trapezium method provide slightly more ac-
curate results than the other two integration methods. The latter methods show a tendency to
overestimate the true values for pulses defined in the close to the shower core class. The shape
plays an important role when the signal is evaluated and integrated with a finite number of dis-
crete points. The distributions of relative values from the far from the shower core class show
the largest spread, i.e. in the order of 0.1%. These deviations are the consequence of the er-
ratic forms that characterize the pulses from this class. In the relative distance class, the signals



36 Energy Reconstruction

Entries  20000
Mean   4.12e−05
RMS    0.001004

−0.02 −0.01 0 0.01 0.02
0

50

100

150

200

250
Entries  20000
Mean   4.12e−05
RMS    0.001004

Trapezium

(a)

Entries  20000
Mean   2.84e−05
RMS    0.001526

−0.02 −0.01 −0 0.01 0.02
0

20

40

60

80

100

120

140

160 Entries  20000
Mean   2.84e−05
RMS    0.001526

Extended Simpson

(b)

Entries  20000
Mean   8.28e−05
RMS    0.001009

−0.02 −0.01 −0 0.01 0.02

20

60

100

140

180

220 Entries  20000
Mean   8.28e−05
RMS    0.001009

Averaged Simpson

(c)

Entries  20000
Mean   4.65e−05
RMS    0.00101

−0.02 −0.01 −0 0.01 0.02

20

60

100

140

180

220 Entries  20000
Mean   4.66e−05
RMS    0.00101

Modified Simpson

(d)

Entries  10000
Mean   1.5e−05
RMS    0.0001824

−0.02 −0.01 −0 0.01 0.02
0

100

200

300

400

500

600
Entries  10000
Mean   1.59e−05
RMS    0.0001824

Trapezium

(e)

Entries  10000
Mean   5.81e−06
RMS    0.0002824

−0.02 −0.01 −0 0.01 0.02
0

50

100

150

200

250

300

350

400
Entries  10000
Mean   5.81e−06
RMS    0.0002824

Extended Simpson

(f)

Entries  10000
Mean   9.82e−05
RMS    0.0001854

−0.03 −0.02 −0.01 −0 0.01 0.02
0

100

200

300

400

500

600
Entries  10000
Mean   9.82e−05
RMS    0.0001854

Averaged Simpson

(g)

Entries  10000
Mean   2.78e−05
RMS    0.0001854

−0.02 −0.01 −0 0.01 0.02
0

100

200

300

400

500

600
Entries  10000
Mean   2.78e−05
RMS    0.0001854

Modified Simpson

(h)

Figure 6.2: The relative energy differences in the far from the shower core (a, b, c, d) and at relative
distance (e, f, g, h) classes, as results of the four integration methods.
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Figure 6.3: The relative energy differences for the close to the shower core class, as results of the four
integration methods.

tend to have a more defined shape and the spread is one order of magnitude smaller. The pro-
nounced Landau-like tail, that is a characteristic of the pulses from the close to the shower core
class, is responsible for the systematic deviation shown by the last two integration methods. The
Gaussian fit provides a better information about these deviations (see results in appendix B, sec-
tion B.1). The percentage of outliers for averaged Simpson and modified Simpson integration
methods is large, about 9.6% and 5.3%, respectively. Small deviations, due to the same tail, are
as well observed for the Simpson and trapezium rules, but their effect is minimal.

As mentioned before, the CPU time consumption represents another evaluation criterion for
these integration methods. This implies to determine the amount of time the CPU takes to per-
form the integration, assuming that the process makes exclusive and uninterrupted use of the
CPU. Since the amount of time needed to perform a single integration is too small to be determ-
ined, each pulse was integrated 10,000 consecutive times for each integration method separately.
The resulting amount of time was then averaged over the total number of pulses. There is no
strong reason to split this analysis into different classes of pulses, since the integration depends
rather on the number of calculations than of the shapes. The results for each integration method
are given in table 6.1. As expected, the trapezium rule is the fastest method, due to the simple
mathematical operations involved. The extended Simpson’s rule is quite slow when compared
with the other methods, i.e. about 8 times slower than the trapezium rule. This is explained by
the use of conditional steps in the alternation of the odd and even terms.
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Integration method CPU time consumption
(milliseconds / 104 integrations)

Trapezium (equation 6.1) 2.9
Extended Simpson (equation 6.2) 24.2
Averaged Simpson (equation 6.3) 3.1
Modified Simpson (equation 6.4) 3.1

Table 6.1: Averaged CPU time consumption for the four integration methods .

This study showed that, in principle, any of the integration methods can be used. In all
presented situations there are no cases of relative energy differences larger than 2%. However,
the trapezium method was chosen due to a consistent behavior and little CPU time consumption.
The Simpson’s extended formula, otherwise showing similar results as the trapezium method,
has the disadvantage of a large CPU time consumption. The averaged Simpson and modified
Simpson integration methods showed a limited performance in integrating the pulses specific to
close to the shower core class, and a slightly larger CPU time consumption than the trapezium
method.

6.2 Digitization and Quantization Errors

The digitization, or quantization, represents the conversion of the sampled analog signal amp-
litudes into digital values. It plays an important role in the signal processing and, due to the
inherent errors that it generates, it should be carefully studied. These errors represent the dif-
ference between the real and the digitized values, and they are generally quoted as quantization
errors.

This section is dedicated to a study of the impact that the 12-bit FADC caracteristics have
on the accuracy of the energy reconstruction. The pulse shapes, generated with the Monte Carlo
tool, are sampled and digitized, and the 251 resulting values are used as input for the pulse
integration.

6.2.1 Digitization

A flash analog-to-digital converter (FADC) transforms an input signal from a continuous shape
to discrete samples. First, the signal is evaluated at equally spaced discrete points and then
the analog-to-digital conversion transforms the sampled values into corresponding digital output
codes. These digital codes represent the quantization levels of the ADC. The difference between
two adjacent levels is quoted as the least significant bit (LSB).

Unlike the successive approximation converter, that compares the input signal to only one
reference voltage, the FADC architecture employs a set of 2N −1 cascaded comparators to meas-
ure the analog signal to a resolution of N bits. A resistive divider with 2N resistors supplies the
reference voltage to each comparator, such that the reference voltage at the input of a compar-
ator is one LSB greater than the reference voltage at the input of the previous comparator. Each
comparator produces a logic ”1”, when the analog input voltage is higher than its input reference
voltage, and a logic ”0”, when the analog input voltage is lower than the same reference voltage.
The output of the comparators is collected by a digital encoder that determines, through a digital
output code, the ADC channel in which the sample is binned.
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Figure 6.4: Example of a pulse shape, created by the Monte Carlo simulation, digitized in the high and
low gain modes. The pulse amplitude is larger than the input range defined for the high gain
mode (a) and the analysis is switched to the low gain mode (b).

The architecture of a 12-bit FADC employs 4095 comparators and 4096 resistors. The char-
acteristics of such a 12-bit FADC were implemented in the simulations. A set of 4096 discrete
levels, separated by 1 LSB, simulates the reference voltages at the input of comparators. Each
sampled value is compared with the set of discrete values, and a variable bit is incremented each
time the sample is larger than one of the references. At the end of the loop, the ADC channel,
corresponding to the sampled amplitude value, is returned by the variable bit.

Apart from the FADC characteristics, the analysis takes the high and low gain channels,
provided by the electronics of the Grande stations, into consideration. As mentioned in chapter 3,
each Grande detector consists of 16 individual scintillators arranged in a 4 × 4 array. Each
of these scintillators is viewed by a photomultiplier operating in high gain mode. The four
central scintillators are viewed by 4 additional photomultipliers operating in low gain mode. The
photomultiplier signals are multiplexed, separately for each gain mode, and the resulting high
and low gain signals feed the two inputs of the KGEMD board. As mentioned in chapter 4, only
the high gain signal can trigger the read-out of the FADC data. There is no trigger condition
implemented in the simulations, because all pulses created with the Monte Carlo tool were
assumed to fulfill the trigger condition. Nevertheless, they are first analyzed in high gain mode
and if the amplitude of the pulses is larger than the input range of the high gain mode, the
analysis is switched to the low gain mode.

It is necessary to define these two gain levels and the corresponding LSB values in the
context of the present simulations. First of all, the amplitude of the pulse shapes is expressed
in arbitrary units, since no calibration is being considered. Assuming an input range of 1V for
the FADC, a maximum amplitude ALG

max, in arbitrary units, was chosen to describe the upper
limit of the input range, in the low gain mode. This amplitude is large enough to ensure that
none of the pulses exceed it. Dividing ALG

max into 4096 discrete intervals, 80 arbitrary units
correspond to one LSB (≈ 0.25mV). The dynamic range achieved in the Grande stations, i.e.
from 0.3 to 750 mips1/10m2 (high gain channel) and from 12 to 30,000 mips/10m2 (low gain
channel) [Ber01], indicates a gain factor fG = 40 between the two gain modes. Therefore, the
LSB value, corresponding to the high gain mode, was considered to be 40 times lower, i.e. 2
arbitrary units. This automatically implies a 40 times lower input range AHG

max for the high gain
mode.

As previously mentioned, the pulses are first resolved in the high gain mode. If the amplitude

1units of minimum ionizing particle
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of the high gain signal is greater than AHG
max, the pulse is considered to be in saturation. This

defines an overflow situation. In this case, an erroneous integration result is provided, since one
or more amplitude values are underestimated. Therefore, the result is rejected and the pulse is
analyzed in the low gain mode, with settings as described above.

The implementation has a technical character. In reality, the FADC system ensures the
same maximum scale, i.e. 1V, for both gain modes. But, in the simulation it is much easier to
apply different input ranges to each gain mode than to rescale the ideal pulses. Moreover, it is
convenient, for the analysis of the results, to keep the pulses in their quasi-continuous form, as
defined in the Monte Carlo algorithm. Figure 6.4 shows the example of a pulse from the close
to the shower core class, which is digitized in both high and low gain modes. Due to the its high
amplitude value, the pulse is saturated in the high gain mode (a) and the analysis is switched to
the low gain mode (b). In the simulation code, the switch between the modes is applied before
the pulse is digitized. Each sampled value is compared successively with the input limit AHG

max.
If any of the samples exceeds this limit, then the situation is flagged and the pulse is digitized in
low gain mode by applying the previously defined factor 1/ fG.

6.2.2 Quantization Errors

As described in the previous section, in the FADC architecture, the analog input voltage is sim-
ultaneously compared to each reference voltage at the input of comparators. This implies that,
for a given sampled analog amplitude Vin, all the comparators with the input reference voltage
smaller than Vin will output a logic ”1”, while the others will output a logic ”0”. The output of
the comparators will look like a thermometer code: 00011111, for a 3-bit FADC example. The
most important estimation of the analog signal is given by the comparator which produces the
last logic ”1”, i.e. the 5th digit, from right to left, in the 3-bit FADC example. At this point, the
difference between the analog signal and the reference voltage defines the quantization error.
Any given sampled analog amplitude will be underestimated by this difference. The error will be
different for each sample, but not larger than 1 LSB. Therefore, it can be said that the digitized
sample is equivalent with the analog value plus the quantization error.

If no systematic effect interferes, then the quantization errors are uniformly distributed
around + 0.5 LSB, with a standard deviation of 1/

√
12 LSB (≈ 0.29 LSB). This means that

the quantization errors are random and uncorrelated. In the present simulations, the quantization
errors are estimated by subtracting the sampled value from the digital code, using the appropriate
conversion.

6.2.3 Results of the Simulation

Applying the settings described in the subsection 6.2.1, each digitized pulse is integrated with
the trapezium method. The integration result represents the reconstructed energy deposit. This
value is compared with the true energy deposit, generated in the Monte Carlo simulation, by
applying equation 6.8. The relative energy differences are filled into histograms. Figure 6.5
shows the digitization results for each class of pulse shapes.

The quantization of the pulses from far from the shower core class (see figure 6.5 c) yields
the poorest results, in the order of 1.8%. There are two main effects that affect the quality of
the energy reconstruction. First, the large values of the relative differences are the consequence
of the digitization applied to pulses of low amplitudes. These pulses represent the contribution
of a few or several particles that arrive with a considerable delay. Their amplitude is usually
ranging between 25-60 ADC channels, which means that the system is viewing these pulses
with only 1.5% of its full scale. Therefore, the quantization errors are large with respect to
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Figure 6.5: The quantization effect on the energy reconstruction. Each ideal pulse is digitized and
integrated with the trapezium method. General results are given for all three classes (plots
a, c and e). The graphs b and d depict the analysis for two gain modes of the pulse shapes
specific to the relative distance class.
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the pulse amplitude, and the energy deposit is largely underestimated. In fact, the pulses from
this class are characterized by low amplitudes. The highest values were observed at about 1050
ADC channels, which represents only 25% of the 12-bit FADC full scale. The second effect,
that lowers the quality of reconstruction, is induced by the quantization of the Landau-like tail
of the pulses. This yields a systematic shift of the relative energy differences. About 12% of the
total sampled amplitudes, most of them from the tail, are smaller than 1 LSB. Thus, for these
samples a digital code 0 is determined, and the integration returns a reconstructed value smaller
than the true value, by this underestimated quantity from the tail. The quantization errors are as
well affected by the bias of the Landau-like tail (see appendix B, figure B.2 a, b). The form of
the distribution suggests the interference of a systematic effect. The high peak in the plot B.2 a
is due to the model developed in the Monte Carlo tool. The particles are randomly distributed
in the 1µs interval, and their individual contributions are piled up. The resulting combined
pulse form is strongly dependent on the random arrival time of the particles, such that the signal
starts from the position indicated by the first arrived particle. This causes an amount of nil
samples in the front of the signal (about 2% per total), which are responsible for the peak from
plot B.2 a. These samples do not influence the integration result, but change the distribution
of the quantization errors. If their contribution is excluded, then a much clearer picture of the
systematic effect introduced by the tail is obtained (plot B.2 b). Most of the samples smaller
than 1 LSB are localized in the tail (plot B.2 c) and the special form of the distribution (plot B.2
b) is mainly generated by the samples from the end of the signal (plot B.2 d). Plot B.2 e shows
that the errors are dominant at small energy deposits, due to the reduced number of individual
contributions.

The quantization of the pulse shapes from the close to the shower core class yields errors in
the order of 0.15% (see figure 6.5 e). Due to their very high amplitudes with respect to AHG

max, all
these signals saturate the high gain channel (see the example in figure 6.4). Therefore, the entire
analysis is performed in the low gain mode, by applying the factor fG. In some cases, the high
amplitudes range up to 96% of the low gain full scale. That ensures a good reconstruction of the
energy deposit. But, the overall quality of the reconstruction is affected by the bias induced by
the Landau-like tail of the pulses. The main characteristic of this class is the large number of
particles arriving in a very short time window. This generates high pulse shapes with longer tails
than the pulses from the far from the shower core class. Therefore, the number of samples taken
from the tail is larger. The distribution of the quantization errors is modelled by this systematic
effect (see figure B.1). Plots B.1 c and B.1 d prove that the dominant peak observed in the
distribution of the quantization errors (plot B.1 a) is generated by the digitization of the sampled
amplitudes from the tail, especially at the end of the signal. The samples from this region are
responsible for the position and the shape of the peak that appears in plot B.1 a. Though most of
the errors still arise at small energy deposits, a spread towards high energies is observed (plot B.1
b). This shows that tail increases with the number of individual contributions.

The quantization of the pulses from the relative distance class necessitates a special ana-
lysis. Due to the intermediary status of this class, the pulse amplitudes vary within the extremes
defined by the other two classes. Therefore, about 32% of the pulses can be analyzed in the high
gain mode (see figure 6.5 b), but for the rest, a low gain analysis is necessary (see figure 6.5
d). The combined effect of this two different analysis is depicted in figure 6.5 a. The energy
reconstruction for the pulses quantized in the high gain mode provides the best results, in the
order of 0.1%. This is explained by the high amplitudes of the pulses, many of them being close
to the upper limit of the input range AHG

max. As in the close to the shower core class, this ensures
a good reconstruction of the energy deposit. Apart from this, the digitization shows practically
no systematic influence, and the quantization errors are uniformly distributed (see figure B.3,
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Figure 6.6: The digitization effect for a sliced energy deposit spectrum. The spectrum is divided in slices
of energy of 50,000 arbitrary units. The relative values are filled into histograms. The mean
and the width of each distribution are extracted and ploted as functions of the corresponding
slice of energy.
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a). The spike in the plot B.3 c shows that there is still a small amount of samples, i.e. 0.4%,
of which value is zero, and their contribution is neglected in plot B.3 a. Anyway, the tail is still
present and a large amount of the quantization errors arise from the sampled amplitudes in the
tail (plot B.3 d).

The pulses quantized in the low gain mode provide poorer results, in the order of 0.3%. The
larger deviations are due to pulses that exceed the high gain input range with only a few samples.
This forces them to be digitized in the low gain mode, with a lower resolution in respect to the
full scale. Apart from this, the systematic effect observed in the other two classes influences the
quality of the reconstruction. The low gain analysis of the pulses from relative distance class
presents similarities with the digitization of the signals from the close to the shower core class
(see figure B.4, a). The pulses tend to a shape characterized by a long tail and its contribution
generates the peak from plot B.4 a.

In order to understand the individual signature of each class better, a more detailed inves-
tigation was carried out. The energy spectrum was divided in slices of 50,000 arbitrary units,
and for each slice a histogram was filled with the corresponding relative values. The resulting
mean and width (RMS) values were extracted and plotted as a function of the energy slice (see
figure 6.6). Plot 6.6 c emphasizes once again that the low amplitude pulses of the far from the
shower core class display the largest systematic and statistical errors, in the order of 4% and
3%, respectively. The plots 6.6 a), 6.6 b and 6.6 d show that it is necessary to treat the relative
distance pulses separately, due to their different digitization in the high and low gain modes. The
energy overlap suggests that the amplitude of the pulses is not only dependent on the amount
of energy deposit, but also on the arrival time of the particles. Pulses with high amplitudes, but
describing lower energy deposits, saturate the high gain mode and force the analysis to the low
gain mode. When the pulses are treated separately, the magnitude of the statistical errors is, in
average, about 0.02% for the pulses digitized in the high gain, and 0.04% for those digitized in
the low gain mode. The effect of the energy overlap and the larger systematic errors, provided
by the latter, are responsible for the magnitude of the statistical errors, shown in the plot 6.6 a,
i.e. of about 0.1%.

Figure 6.7 depicts the example of a slice (2 · 106 arbitrary units) from the region where the
energies overlap. The plot (b) shows the individual distributions of the relative values obtained
in high (right) and low gain (left). The two distributions are generated by sets of completely dif-
ferent relative values. Therefore, when the distributions are separately considered, the statistical
errors are small, about 0.01% for high gain, and 0.06% for low gain. The combination of the
two sets of relative values into one common distribution, causes large statistical errors, about
0.08%, and a mean shifted accordingly.

This study shows, that the overall digitization effect, induced by the 12-bit FADC charac-
teristics, on the reconstruction of the energy deposit, is smaller than 2%. The largest errors are
caused by the pulses of which amplitudes are located at the low limit of the FADC resolution.
The Landau-like tail induces a systematic shift, which affects the accuracy of the reconstruc-
tion and the distribution of the quantization errors. On the other side, the chosen input ranges
for the high an low gain modes, i.e. AHG

max and ALG
max, bring their influence to the quality of the

reconstruction, since they are arbitrarily chosen.

6.3 Noise Analysis

The term noise refers to a random, persistent and undesired disturbance, that accompanies or
interferes with a certain signal. In electric devices, the noise is associated with small fluctuations
in the voltage or in the current that flow through the circuit. These oscillations may be generated
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Figure 6.7: The overlaping energy region between the high and low gain analysis of the pulses from the
relative distance class (plot a). The large statistical errors of the relative values, showed in
plot a, are due to the individual distributions generated by each mode (plot b).

by an external source, e.g. electromagnetic coupling between an electric circuit and the ac power
lines, or may be internally generated, as a result of the electrical charge transport. There are three
main types of electrical noise: thermal noise, shot noise and low frequency noise.

Thermal noise results from the stochastic motion of the charge carriers in a conductor or
semiconductor material. The electrons inside the material carry amounts of energy that vary
with the temperature of the material. The random agitation of the electrons produces small fluc-
tuations in energy, which are sufficient to cause significant noise potentials within the mater-
ial [Mil72]. This phenomenon was first observed by J.B. Johnson in 1927, but a theoretical
analysis was developed by H. Nyquist in 1928. He showed that the instantaneous voltage across
any resistor R at a temperature T has a power spectral density:

dE2
th

d f
= 4kBT R , (6.9)

where Eth is the RMS value of the noise voltage, kB is the Boltzmann’s constant (1.38 · 10−23

J/K) [Mot93]. Thermal noise is often quoted as Johnson noise or Nyquist noise.
Shot noise is associated with the current flow across a potential barrier. Therefore it is present

in transistors, diodes or vacuum tubes, but not in conductors. In transistors the shot noise is due
to the random diffusion of the carriers through the base-emitter junction. Also, the random
generation and recombination of the hole-electron pairs in a p-n junction results in small current
variations, which are referred to as shot noise. In vacuum tubes, the shot noise arises from the
random emission of electrons from the cathode [Mot93, Ott76].

The phenomenon was first theoretically investigated by W. Schottky in 1918, who called it
Schroteffekt. He showed that spectral power density of the shot noise current fluctuations is:

dI2
sh

d f
= 2q · I , (6.10)

where Ish is the RMS value of the noise current and q is the electron charge (1.6 ·10−19C) [Ott76].
Low frequency noise, also called 1/ f noise or flicker noise, is present in all active devices.

The spectral density of the noise voltage increases as the frequency decreases:

S f ( f ) =
E2

f

f α , (6.11)
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where E f is the RMS value of the corresponding noise voltage and the exponent α ≈ 1. Thus,
unlike the thermal and shot noises, the low frequency noise has spectral densities that are fre-
quency dependent. In fact, if α = 0, then equation 6.11 would describe a noise mechanism
similar with the thermal and shot noises [Mot93].

In the following subsections, general characteristics of the above presented noise mechan-
isms are implemented in the simulations. Noise content is added to the ideal pulses and methods
for the reconstruction of the energy deposit are investigated.

6.3.1 Time Jitter

For an analog-to-digital converter (ADC) it is theoretically assumed that the samples are taken
at a regular time interval. In practice, different sources of errors produce small variations in
the time accuracy and the result is an evaluation of the amplitude at the wrong instant. This
instability of the time interval duration it is often quoted as time jitter. Although it is not really
a noise, but rather a time-base error, the time jitter is mainly due to the noise which arises in the
clock source of the ADC. When present in excess, the time jitter can degrade the performance
of the conversion system.

Crystal oscillators are usually used as clock sources due to their high accuracy and frequency
stability, and the low time jitter they feature. Thermal noise inside the oscillation circuit and
the phase modulation of the oscillator frequency are the main contributors to the short-term
instability in the clock signal. There are different ways to measure and express the time jitter.
One of the most used terms is the cycle-to-cycle jitter (Jcc). It defines the time variation that
occurs between two successive periods of a clock waveform:

Jcc = Tk −Tk+1 , (6.12)

where Tk and Tk+1 are two adjacent clock periods and k is the period index (see figure 6.8).

T T

Vthr

k k+1

Figure 6.8: Schematic view of the cycle-to-cycle jitter. A threshold value Vthr defines a reference point
on the rising edge of the clock for the time periods Tk and Tk+1.

Another important term in the jitter analysis is the peak-to-peak jitter (Jpp). It is defined
as the difference between the lowest and highest deviation of the clock signal from its ideal
position (see figure 6.9). Assuming a Gaussian distribution to describe the random jitter, the
peak-to-peak value is used to define the limits that bound the jitter. The standard deviation of
the Gaussian distribution defines another term, the RMS jitter.

In this study, it is assumed that the random jitter lies within ±3.3 RMS jitter of a Gaussian
distribution centered at zero. Therefore, the peak-to-peak jitter value is 6.6 RMS value. This
means that the random jitter will be generated with a probability of 99.99% within the limits
defined by Jpp. The values introduced in the simulation in order to generate the random jitter are
given in table 6.2. The first row represents the technical specifications of the crystal oscillator
implemented on the KGEMD board (see chapter 4). At this step, the Jcc jitter is considered, by
restricting the difference between two consecutive random jitters to be larger than the indicated
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peak−to−peak

Figure 6.9: Schematic view of the peak-to-peak jitter. The difference between the lowest and the highest
deviation of the clock signal, from its ideal position, defines the peak-to-peak jitter.

Jcc value. The rest of simulations use only the Jpp jitter, and hence, the RMS jitter. The time
jitter analysis is performed in the following steps. For each Jpp value, a Gaussian distribution, of
width RMS jitter, is defined. Then, at every 4 ns, a random jitter, generated from the Gaussian,
is added to the time value. The pulse is evaluated at the jittered points and the resulting sampled
amplitudes are digitized. Applying the trapezium integration and using equation 6.8, the relative
energy differences are obtained and filled into histograms.

Peak-to-peak jitter Cycle-to-cycle jitter
(nanoseconds) (nanoseconds)

0.20 0.25
0.50 none
0.75 none
1.00 none
2.50 none

Table 6.2: Jitter values used in simulations .

Figure 6.10 depicts the results obtained for each class of pulses, by applying different jitter
values. The mean value of each distribution is plotted as a function of the Jpp, and the width of
the distribution is given as error bar. For a better understanding of the errors introduced by the
time jitter, the results for Jpp = 0 (ideal case) are plotted as well in each graph. The conclusion is
that the jitter contribution is, in general, negligible. The largest errors arise at the sampling and
the digitization of the pulses from the close to the shower core class (plot d). The errors increase
with the jitter value, from 0.14% in the ideal case, to 0.4% for Jpp = 2.5ns. The fact that the
mean value stays constant, shows that the jitter affects the sampling of high amplitudes, rather
than the sampling of the tail. The voltage in the tail decreases slowly and any sample taken at
the wrong instant would not bring a significant change to the overall energy reconstruction.

Also, there are small jitter contributions to the digitization in high gain of the pulses from
the relative distance class (plot 6.10 a. The errors increase very slow with the Jpp value, from
0.1% in the ideal case, to 0.14% for Jpp = 2.5ns. Similar to the previous case, the errors are
generated when sampling the high amplitudes, rather than sampling the tail. This is proved by
the results shown in the plots 6.10 b and c. The digitization of these pulses has shown results
influenced by the low amplitude characteristic and the large systematic effect, induced by the
sampled amplitudes from the tail (see section 6.2.3). Applying different values of time jitter does
not change significantly the result of the reconstruction. The jitter mainly influences high pulses
with large gradient, like those from the close to the shower core class, where the sampling is
sensitive to any small time-base error.

The complete numerical results of the time jitter analysis are given in the tables B.4, B.5
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Figure 6.10: Jitter contribution to the energy reconstruction. The mean values of the distributions are
plotted as a function of different peak-to-peak (Jpp) jitter values. The widths of the distri-
butions are plotted as error bars.

and B.6 (see appendix B).

6.3.2 White Noise

The white noise is the noise with equal power over the entire frequency spectrum. The thermal
and the shot noises, described with equations 6.9 and 6.10, are sources of white noise. When
measured in time, their amplitudes follow a Gaussian distribution.

In this section the white noise contribution to the reconstruction of energy is investigated.
A Gaussian distribution, centered in zero, and with a certain width σ , is chosen to generate a
random white noise. The following values, expressed in units of ADC channels, are chosen for
the standard deviation (σ) of the Gaussian distribution:

0.15, 0.303, 1, 1.5, 2, 3, 4, 5, 10, 15.
To a good approximation, the noise is considered to be bounded within ±3.3σ . In order

to avoid negative amplitudes, when the white noise is added to the ideal pulses, the baseline of
the signals is arbitrarily shifted by 100 ADC channels (constant pedestal). This contribution has
later to be estimated and subtracted from the integration result.

Another important implementation is related to the noise amplitude in the high and low
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Figure 6.11: Example of an ideal pulse which is smeared in amplitude by the white noise contribution.
The pulse first is shifted in amplitude by a constant pedestal, and then smeared by the
Gaussian noise. The pedestal has 100 ADC channels, while 2 arbitrary units correspond to
1 LSB (high gain analysis). In these example, the width of the noise is 4 ADC channels.

gain mode. In these simulations, it is assumed that the noise contribution is equal in both gain
channels, i.e. the main amount of noise appears after the photomultiplier signals are mixed.
This means that the shape of a pulse, resulted from the addition of noise to an ideal pulse in
high gain mode, will not change when the analysis is switched to the low gain. As mentioned
in section 6.2.1, the analysis in the low gain mode implies the change of the input range, from
AHG

max to ALG
max, and not the rescaling of the pulse. Thus, the sampled amplitudes keep their values,

expressed in arbitrary units, but the corresponding ADC channel will differ accordingly. That is
to say, the signal to noise ratio is constant in both gains.

At every 4ns, a random white noise value is generated and added to the sampled ideal amp-
litude, together with the constant pedestal. Figure 6.11 shows the example of an ideal pulse
(plot a), from the far from the shower core class, which is shifted in amplitude by the constant
pedestal and by the white noise contribution (plot b). In order to reconstruct the energy deposit
of such a pulse, the contribution of the pedestal has to be estimated, and then subtracted from
the integration result. For these simulations, a correction method that estimates the spread of the
pedestal, both at the beginning and at the end of the signal, has been chosen. The first and the
last four digitized samples are averaged separately, and the resulting pedestal levels are connec-
ted with a first order polynomial line. The 1µs time window, the polynomial line and the two
pedestal levels form an area, the integral of which is subtracted from the integration result.

Since the pulses generated by the Monte Carlo tool are not a direct result of any threshold
condition, the signals have a random starting position with respect to the 0 reference of the 1µs
digitization interval. Therefore, all or part of the first four samples of the signal can be equal to
zero, i.e the signal starts later, or can be positioned on the leading edge of the pulse. In the latter
case, the averaged value of the four samples deviates significantly from the baseline such, that
it introduces large errors, when the pedestal correction is applied. Due to the internal delay in
the FADC system, a certain amount of samples, before the threshold to be crossed, are available
for read-out, and hence, for analysis (see figure 4.1). This amount of samples is not consistently
ensured by the Monte Carlo tool, but rather randomly. In order to eliminate this drawback, four
leading zero samples are prepended to each ideal signal. Like the other 251 samples, they are
weighted with the constant pedestal (100 ADC channels) and the random noise. It should be
emphasized, that these leading samples are not used as input for the pulse integration, but only
to determine the spread of the pedestal at the beginning of the signal.
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Figure 6.12: White noise effect on the low amplitude pulses. The height of the pulse is about 26 ADC
channels. The RMS of the noise is 15 channels, but the noise amplitudes can be larger than
45 ADC channels. The pulse is drowned in the noise and the energy deposit is reconstruc-
ted with huge errors.

Integrating the pulse with the 251 digitized values and subtracting the estimated pedestal
contribution, a reconstructed energy deposit is obtained and compared with the corresponding
true energy deposit, by applying equation 6.8. The relative energy differences are filled into
histograms.

Figure 6.13 shows the results obtained for each class of pulses, by applying different white
noise values. The mean of each distribution is plotted as a function of the chosen RMS values of
the white noise, and the width of each distribution is given as error bar. In order to understand
the errors introduced by the white noise better, the ideal case (white noise RMS = 0) is plotted
as well. As expected, in all cases, the errors increase with the level of noise. The largest effect
is shown by the pulses from the far from the shower core class (plot b), i.e. about 50% error
for an RMS of the white noise of 15 ADC channels. These huge errors are caused by the low
amplitude pulses which are effectively drowned in the noise. Figure 6.12 shows the example
of such a pulse, covered completely by the level of noise. In the ideal case, the pulse has an
amplitude of about 26 ADC channels (for the high gain analysis, it is considered that 2 arbitrary
units correspond to 1 ADC channel). The RMS of the white noise is, in this example, 15 ADC
channels, but the noise can have amplitudes larger than 45 ADC channels. The energy deposit
is reconstructed with very large errors, since only the noise is sampled and integrated.

The reconstruction of the pulses from the other two classes shows large errors as well, but
much smaller when compared with the results of the far from the shower core class. For a
RMS value of the white noise of 15 ADC channels, the errors range from 2%, in the case of
the relative distance pulses analyzed in high gain mode (plot 6.13 a), to about 20%, in the case
of the relative distance pulses analyzed in low gain mode (plot 6.13 c). The former shows a
deviation of the mean from the ideal case of about 3%, which suggests that the reconstruction is
influenced by a systematic effect. The reconstruction of the pulses from the close to the shower
core class provides medium errors, up to 6%.

In order to understand these effects better, an analysis, similar to that introduced in sec-
tion 6.2.3, was carried out. The spectrum of energy deposits, generated with the Monte Carlo
tool, was divided into slices of 50,000 arbitrary units. For each slice, a histogram was filled with
the corresponding relative values. The resulting mean and width values are extracted and plotted
as a function of the corresponding slice of energy. The set of figures B.5 ÷ B.9 (see appendix B,
section B.4) depicts the results of this analysis, carried out for different RMS values of white
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Figure 6.13: White noise contribution to the energy reconstruction. The mean values of the distributions
are plotted as a function of the different RMS values of the white noise. The widths of the
distributions are plotted as error bars.

noise.
The largest errors are provided by the reconstruction of the low amplitude pulses from the

far from the shower core class (plots b and f, in each figure). As shown in figure 6.12, these
pulses are completely covered by noise and the reconstruction provides very large errors, i.e.
more than 100% for the RMS of the noise of 15 ADC channels. If this contribution is cut
away, then the reconstruction provides much smaller errors, between 0.4% and 14%, from the
lowest to the highest RMS value of the noise. The horizontal alignment of the mean values
shows that the noise attenuates the Landau-like tail effect (see section 6.2.3). In fact, the white
noise produces a dithering effect, by improving the digitization of the small and slowly varying
tail signal. This means that the noises causes the digitized signal to alternate between adjacent
quantization levels, such that the digitization result provides more information about the tail
signal. It can be noticed that even a small amount of noise, e.g. RMS = 0.15 ADC channel (or
LSB, as shown in the plots), can cause such an effect. Therefore, the quantization errors are now
uniformly distributed. Also, the applied pedestal correction brings a significant contribution to
the observed horizontal alignment. When the RMS value of the white noise becomes very large,
the tail is drowned in the noise and the main contribution to the final result is brought by the
pedestal correction method. In all cases, the mean values show a deviation smaller than 1%.

The reconstruction results provided by the other two pulse classes are modelled by the same
effects, the digitization of the low amplitude pulses, the dithering effect and the pedestal cor-
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rection. The reconstruction of the pulses from the close to the shower core (plots d and h, in
each figure) shows such a characteristic. The poorest results arise from the digitization of the
low amplitude pulses. In these cases, the errors range from 0.3% (RMS = 0.15 LSB) to 12%
(RMS = 0.15 LSB), but the highest pulses are reconstructed with errors up to 4%. The dithering
effect is slower, since the Landau-like tail of these pulses is longer and higher than the tail of the
pulses from the far from the shower core class.

A special effect is provided by the analysis in high gain mode of the pulses from the relative
distance class. At high energy deposits, the mean values show a displacement from the hori-
zontal alignment, especially at low noise contributions. This break occurs in the region where
the spectra of energy deposits of the pulses analyzed in high and low gain modes overlap. Part
of the pulses from this region are characterized by a large number of particles, distributed in a
large time extent, and by high amplitudes, at the limit of AHG

max. The spread induces a significant
tail signal, which biases the pedestal correction. The level detected at the end of the signal is
significantly higher than the level detected by the four leading digitized samples. Therefore, the
deviation showed in the plot, represents the error introduced by this effect and the correction
method. Again, for low RMS values, the white noise does not produce a dithering effect on high
tail signal. When the noise level is increased, an attenuation of the effect is observed, because
the amplitudes of these pulses are pushed beyond the input range AHG

max. Thus, they are analyzed
in the low gain mode. For the rest of the pulses from this region, the attenuation is produced by
the dithering effect and the applied pedestal correction.

This study shows that the white noise contribution to the reconstruction of the energy deposit
is more than significant. The magnitude of the reconstruction errors increases with the RMS
value of the white noise. Also, the signal to noise ratio is determinant for the quality of the
reconstruction. The low amplitude pulses analyzed in the high gain mode are distorted or even
completely covered by the noise content, and therefore, the reconstruction fails. The analysis of
the higher amplitude pulses, in the same gain mode, provides the smallest errors, i.e. up to 2%
for a RMS value of the noise of 15 ADC channels. As for the high gain mode, the reconstruction
performed in the low gain mode provides largest errors in the analysis of the low amplitude
pulses, i.e. in the order of 20 − 30%, for the same maximum simulated RMS value of the
noise. This result brings an important conclusion. Due to the large noise content, high amplitude
pulses, which normally provide a good reconstruction result in the high gain mode, are pushed
in saturation, and their analysis in the low gain mode returns large reconstruction errors.

Also, it was observed that the white noise attenuates the systematic effect introduced by the
Landau-like tail of the pulses. A dithering effect occurs, by alternating the tail signal between
adjacent quantization levels, and thus, providing more information about the tail content. At
large RMS values of the white noise, the pedestal correction brings the main contribution to the
final result, since the tail signal is drowned in the noise.

6.3.3 Low Frequency Noise

As previously mentioned, the noise power has spectral densities that vary as power of the inverse
frequencies, i.e. 1/ f α . When the exponent α = 1, the noise is referred as to low frequency noise.
Since it is present in all active devices, an analysis of its contribution to the reconstruction of the
energy deposit was carried out.

In these simulations, the following parameterization has been chosen to describe the low
frequency noise:

F(t) = A · sin(2πνt) , (6.13)

where A and ν represent the amplitude and respectively, the frequency of the noise. Two fre-
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Figure 6.14: The low frequency noise contribution. The ideal pulse (a) is shifted in amplitude by the
constant pedestal (100 ADC channels) and by the low noise contribution (b). In this ex-
ample, the noise frequency is 100 kHz, while the amplitude has 50mV.

quency values are considered in this study: 15kHz and 100kHz. Apart from these values, the
contribution of the noise generated by an electrical source, i.e. 50Hz, was investigated. The
conclusion was that the effect is negligible, since for 1V amplitude of the noise, the maximum
contribution in 1 µs is about 0.3mV. This is slightly larger than the corresponding voltage value
in 1 ADC channel (≈ 0.25mV), and thus, the reconstruction is not affected by this type of noise.

The amplitude of the low frequency noise is simulated according to the following values:
5mV, 10mV, 20mV, 30mV, 50mV, 100mV, 150mV, 200mV. The voltages are converted
in arbitrary units, by considering that, the 1V input range for the FADC corresponds to the
maximum amplitude AHG

max (or ALG
max) expressed in arbitrary units.

In order to ensure different low frequency noise contributions to each pulse, a time variable
T is introduced in equation 6.13, such that:

F(t +T ) = A · sin[2πν(t +T )] . (6.14)

The variable T is randomly generated from an uniform distribution such, that it takes differ-
ent values at each event. This means, that the pulses will have different positions, with respect
to the phase of the sine functions, and hence, the noise contribution will differ. The interval of
the uniform distribution is chosen to be [0;2/ν].

Like in the white noise analysis, at every 4ns, the low frequency noise contribution and the
constant pedestal (100 ADC channels) are added to the sampled ideal amplitude. Figure 6.14
shows the example of an ideal pulse (plot a), from the far from the shower core class, which
is shifted in amplitude by the constant pedestal and the low frequency noise contribution. In
order to apply pedestal corrections, four leading samples are prepended to each pulse. Then,
the first and the last four samples are averaged separately, and the resulting pedestal levels are
connected with a first order polynomial line. The two pedestal levels, the 1µs time window and
the polynomial line form an area, the integral of which is subtracted from the integration result.

Apart from the white noise analysis, in these simulations the pedestal value is not always
sufficient to avoid negative amplitudes. The noise contribution is, in some cases, large enough
to determine negative sampled amplitudes. This defines an underflow situation. As in the white
noise analysis, the noise contribution is considered equal for both high and low gain channels.
Therefore, the underflow will exclude the pulse from any further analysis, since the signal to
noise ratio will have the same value in the low gain mode.

Integrating the pulse with the 251 digitized values and subtracting the estimated pedestal
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Figure 6.15: Landau-like tail contribution to the energy reconstruction, in the case of the pulses from
the relative distance class. The pedestal variation is defined as the difference between the
estimated level of noise at the beginning of the signal and that estimated at the end of the
signal. The low frequency noise contribution is smaller than 1 ADC channel.

contribution, a reconstructed energy deposit is obtained. The relative values are computed with
equation 6.8 and filled into histograms. Figure 6.16 depicts the reconstruction results obtained
for each class of pulses, by applying 15 kHz (plots a, b, c, d) and 100 kHz (plots a, b, c, d)
low frequency noises, with different amplitudes. The resulting mean values are plotted as a
function of the noise amplitudes, and the width values are given as error bars. The ideal case
(noise amplitude zero) is plotted as well.

In the case of 15 kHz low frequency noise, the reconstruction in high gain mode of the pulses
from relative distance class (plot a), shows a distinct result, when compared with the other cases.
The mean values of the relative energy differences deviate by about 0.3% from the ideal case,
showing a consistent tendency to underestimate the true values. In the other cases (plots b, c and
d), the mean values deviate from the ideal case towards the true values. In order to understand
these effects better, a similar analysis to those described in sections 6.2.3 and 6.3.2, was carried
out. The spectrum of energy deposits was divided into slice of 50,000 arbitrary units, and, for
each slice, a histogram was filled with the corresponding relative values. The resulting mean
and width values were extracted and plotted as a function of the corresponding slice of energy.
The case of 0mV (ideal case) is plotted as well. The results are shown in the set of figures B.10
÷ B.13.

The reconstruction results, in the high gain mode, of the pulses from the relative distance
class (plots a and e, in the mentioned set of figures) are influenced, like in the white noise
analysis, by the low amplitude pulses and the significant tail signal, that characterizes the high
amplitude pulses. The latter effect is depicted in the example from figure 6.15. The pedestal
variation is plotted against the relative values, for the pulses from the relative distance class
analyzed in high gain (plot a) and low gain (plot b) modes, in the case of 15kHz low frequency
noise, with 5mV amplitude. In these examples, the pedestal variation is defined as the difference
between the estimated level of noise at the beginning of the signal, and the level estimated at the
end of the signal. These differences are larger in the high gain mode than in the low gain mode.
Since the contribution during 1 µs of the 15kHz low frequency noise, with 5mV amplitude, is
less than 1 ADC channel, in both gain modes, the differences between the estimated levels of
noise are due to the tail in the end of the signal and the applied pedestal correction. This picture
is a proof of the previous statement, that the tail signal in the high gain is quite significant, and
influences the reconstruction results, in the sense that the pedestal correction will always cut, in
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Figure 6.16: The 15 kHz (plots a, b, c, d) and 100 kHz (plots e, f, g, h) low frequency noises contribution
to the energy reconstruction. The mean of the relative values is plotted as a function of the
noise amplitudes, and the width of the relative values is given as error bars.
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such cases, a significant part of the signal. Therefore, the reconstruction will underestimate the
true energy deposit. The largest deviations from the true values, i.e. in the order of 0.6%, occur
for large differences between the estimated levels of noise, and are reduced with the lowering
of the same differences. Once the amplitude of the low frequency noise is increased, part of the
pulses exceed the input range AHG

max, and are analyzed in the low gain mode, or they are excluded
from any analysis, when the amplitude of the noise pulls the signal amplitudes towards negative
values. Nevertheless, the reconstruction, in the high gain mode, of the pulses from the relative
distance class provides the lowest reconstruction errors, up to 0.6%.

In the low gain mode (plots c and g in the set of figures B.10 ÷ B.13), the tail contribution
is much smaller, due to the fact that the input range ALG

max is 40 times larger, and thus, the cor-
responding LSB value is larger by the same amount. The noise has a constant contribution in
both gain modes and this is almost linear. This is due to the fact that the period of the 15kHz
low frequency noise is about 66 µs, much larger than the 1 µs digitization period. Since the tail
contribution in the low gain analysis is small, and this tail usually represents a long signal, the
pedestal correction will mostly overestimate the true energy deposits. This explains the better
relative values achieved in the low gain analysis, for 15kHz low frequency noise, than those
achieved in the ideal case. This is as well a characteristic of the pulses from the far from the
shower core (plots b and f in the set of figures B.10 ÷ B.13) and close to the shower core classes
(plots d and h in the same set of figures), of which pulses are characterized by small and long tail
signal. The magnitude of the errors is dominated by the poor reconstruction of the low amplitude
pulses from each class, i.e. about 6% for the far from the shower core class, and, respectively,
0.8% for close to the shower core class.

The analysis performed for the 100kHz low frequency noise shows the same characteristic
seen in the previous analysis (see figure 6.16, plots e, f, g, h). At low noise amplitudes, the
results of the analysis, in the low gain mode, of the pulses from the relative distance class (plot
e), show a deviation of the mean values, which is distinct from the results provided by the other
classes. But, as the amplitude of the low frequency noise increases, the mean values are shifted
towards the true values. This effect models the results of all categories of pulse shapes. On the
other side, the contribution, during 1 µs digitization period, of the 15kHz low frequency noise
with 200mV amplitude, is equal to the contribution of the 100kHz low frequency noise with
30mV amplitude, i.e. 18.84mV, which corresponds to about 77 ADC channels. This explains
why the results are almost similar, up to this noise level. Above 30mV amplitude values, the
contribution of the 100kHz low frequency noise determines the shift of the mean values, as
shown in corresponding plots of figure 6.16.

In order to understand these effects, the same analysis, in which the energy spectrum is
divided in slices of energy, is performed. The set of figures B.14 ÷ B.17 depicts the results of
the analysis. Above 30mV amplitude, as it was expected from the experience of the previous
analyses, the deviation of the mean values, from the plots of the figure 6.16, is mainly due to the
digitization of the low pulse amplitude. The largest errors are provided by the analysis of pulses
from the far from the shower core class, i.e. 60%, while the lowest are provided by the analysis,
in high gain mode, of the pulses from the relative distance class, i.e. in the order of 1%. But,
these large errors mask two effects that can be observed in the plots of the new analysis. First, at
higher energies, the mean values have a tendency to decrease. This shows that the contribution
of the 100kHz low frequency noise induces an underestimation of the respective pulses. On the
other hand, all the mean values are shifted towards higher values, as the amplitude of the low
frequency noise increases.

First of all, the period of the 100kHz low frequency noise is 10 µs. This means that the sine
characteristic is more emphasized in the digitization interval of 1 µs, and the noise contribution
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is more significant, when compared with the characteristics of the 15kHz low frequency noise.
As a first effect, the negative amplitudes of the noise will pull many pulses into underflow,
and, therefore, exclude them from any analysis. The positive amplitudes of the noise and the
emphasized sine characteristic contribute to the reconstruction of the energy deposit such, that
the pedestal correction mainly overestimates the true values. The contribution increases with
the noise amplitude, and this explains why all mean values shift to higher values when the noise
amplitude increases. At 200mV noise amplitude, most of the reconstructed values are positive,
while at 5mV amplitude only a few were showing such a characteristic. On the other side, the
Landau-like tail of the pulses contributes to the lower reconstruction results at higher energies.
The tail contribution induces a higher estimated noise level at the end of the signal such, that
the pedestal correction reduces the noise contribution. Since the tail signal increases, for all
categories of pulse shapes, with the energy deposit, the mean values drop towards higher energy
deposits.

This study shows how different noise contributions influence the reconstruction of the energy
deposit. In the first case, 15kHz low frequency noise, the noise contribution is almost linear and
the largest errors are in the order of 2%. In the second case, 100kHz low frequency noise, the
noise contribution approaches a sine characteristic and the largest errors are in the order of 60%.
For the latter case, the first order polynomial correction shows limitations, since the applied
noise is nonlinear.





Chapter 7

Conclusions

In this thesis, reconstruction algorithms for the FADC DAQ system of the KASCADE-Grande
experiment have been investigated. A Monte Carlo tool was developed in order to ensure a large
collection of pulse shapes. The pulses were simulated as response of one Grande station, and
they were organized in three classes, according to the distance from the shower core: far from
the shower core, at relative distance and close to the shower core. Random energy deposits
were created for each event, and fractions of these deposits were assigned to individual pulses.
These pulses were scaled and piled up such, that the area below each combined shape equals a
corresponding true energy deposit. The Monte Carlo turned out to be a useful tool to study many
questions related to the pulse shape reconstruction. The resulting collection of pulse shapes was
used as input for several studies.

In order to retrieve the energy deposit, the pulse shapes were integrated such, that the result is
a quantity in arbitrary units of amplitude multiplied by time. This result defines the reconstructed
energy deposit, which is compared with the corresponding true energy deposit. The precision
and accuracy of the reconstruction and the time consumption of different integration methods,
for equally spaced samples, were investigated. The trapezium method was chosen due to a
consistent behavior and little CPU time consumption.

Implementing the 12-bit FADC characteristics, the digitization and quantization errors have
been studied. The ideal pulses, simulated with the Monte Carlo tool, were sampled every 4ns
and digitized in the high gain mode. Whenever the amplitude of the pulses was larger than the
input range of the high gain mode, the analysis was switched to the low gain mode. The resulting
digitized samples were used as input for the trapezium integration. The study showed, that the
energy deposit can be reconstructed with errors smaller than 2%. The largest errors were due
to the digitization of the low amplitude pulses, which are located at the low limit of the FADC
resolution. Another effect, that influences the reconstruction result, is the Landau-like tail of the
pulses. The tail signal decreases slowly, and the digitization underestimates the energy contained
in the tail. This effect models the distribution of the quantization errors, which normally should
be distributed uniformly.

Time base-errors and amplitude fluctuations were implemented in the analysis, in order to
simulate the individual characteristics of the electronics in each Grande station. The short-
term instability in the clock signal (jitter) was investigated, by sampling the pulses at a wrong
instant, and digitizing the resulting sampled amplitudes. The reconstructed energy deposits were
obtained by integrating the digitized pulses with the trapezium method, and the results have been
compared with the corresponding true energy deposits. This analysis showed, that the jitter
contribution to the reconstruction of the energy deposit is negligible. The largest contribution is
given by the analysis of the high amplitude pulses. These signals are characterized by a large
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gradient, which makes the sampling sensitive to any small time-base error. The Landau-like tail
brings no effect, since this signal decreases slowly.

The white noise contribution to the reconstruction of energy deposit was investigated, by ap-
plying different noise content to the ideal pulses. The white noise was generated from a Gaussian
distribution, and different RMS values of the noise, i.e. from 0.15 ADC channels up to 15 ADC
channels, were used to define the white noise content. Additionally, in order to avoid the neg-
ative amplitude values, the baseline of the pulses was arbitrarily shifted by 100 ADC channels.
The resulting amplitudes were sampled and digitized, and trapezium integration was applied.
In order to reconstruct the true energy deposit, the level of noise is estimated and subtracted
from the integration result, by applying a first order polynomial line. The results showed that the
magnitude of the reconstruction errors increases with the amplitude of the applied white noise.
The largest errors were provided by the low amplitude pulses, which showed to be distorted or
completely covered by the white noise content. Therefore, the reconstruction fails. The smallest
error were provided by the analysis of the higher amplitude pulses in the high gain mode, i.e.
up to 2% for an RMS of the white noise of 15 ADC channels. The largest errors obtained in the
low gain analysis, i.e. 20−30%, were due to low amplitude pulses. This showed that, due to the
large noise content, pulses which normally provide good results in the high gain analysis, exceed
the input range of the high gain and are analyzed with large errors in the low gain mode. Also,
a dithering effect was observed for small RMS values of the white noise. The noise forced the
amplitude of the tail to alternate between adjacent quantization levels such, that the information
from the tail can be reconstructed.

In the last analysis, low frequency noise was applied to the ideal pulses by means of a
parameterization, based on a sine function. Two frequency values were considered, 15kHz and
100kHz, with different amplitudes between 5mV and 200mV. Due to the chosen frequency val-
ues, and hence, the resulting periods, the two contributions are different. The 15kHz frequency
noise brings a linear contribution, while the 100kHz low frequency noise shows a character-
istic that approaches the underlying sine function. These contributions were applied to the ideal
pulses, and the baseline of the pulses was shifted by 100 ADC channels. In order to reconstruct
the energy deposit, the same linear pedestal correction was applied, and the estimated noise
level was subtracted from the integration result. Due to the linear contribution, the 15kHz low
frequency noise analysis has provided small errors, up to 2%. In the second case, the linear
pedestal correction overestimates the sine-like contribution of the 100kHz low frequency noise,
and the error increase, i.e. up to 60%, with the amplitude of the applied noise.



Appendix A

Probability Distributions and Random
Number Generation

A.1 The Exponential Distribution

The common way to generate random numbers from an exponential distribution is to use the
inverse of the cumulative function. If the exponential distribution function has the form:

f (x) =
1
λ
· e−

x
λ , f or x ≥ 0 , (A.1)

where λ is the mean of the distribution, then the cumulative distribution is:

F(x) =
∫ x

0
f (x)dx = 1− e−

x
λ . (A.2)

Applying the inverse of the cumulative distribution function, any variable x is generated from an
exponential distribution:

x = F−1(ξ) = −λ ln(1− ξ) = −λ ln(ξ ‘) , (A.3)

where ξ is uniformly distributed in the unit interval, and ξ ‘ = 1− ξ .

A.2 The Uniform Distribution

The uniform distribution describes a constant probability density on an interval [a,b] and zero
outside it:

f (x) =
1

b−a
, f or a ≤ x ≤ b . (A.4)

The cumulative distribution is:

F(x) =











0 i f x ≤ a
x−a
b−a i f a ≤ x ≤ b

1 i f b ≤ x

(A.5)

Any variable x is generated from an uniform distribution if:

x = F−1(ξ) = (b−a)ξ +a , (A.6)

where ξ is uniformly distributed in the unit interval.
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A.3 The Gauss Distribution

The Gauss distribution:

f (x; µ,σ) =
1

σ
√

2π
e−(x−µ)2/2σ2

, (A.7)

where µ is the mean and σ is the standard deviation of the distribution. There are several methods
to obtain a random number from a Gaussian distribution. The method used for the present work
is the method implemented in the ROOT physics analysis package, which is similar with the
Box-Muller transformation. If y and z are uniformly distributed in the unit interval, then the
variable x is distributed following a Gaussian with mean µ and width σ , if:

x = µ +σ · sin(2πz)
√

−2 · log(y) . (A.8)



Appendix B

Plots and Tables

B.1 Numerical Integrations and Gaussian Fit Results

The relative energy differences given by equation 6.8 are filled into histograms and the resulting
distributions are fitted with a Gaussian function. The mean and the width of the distributions
(MeanData, RMSData) and of the Gauss fit (MeanFit , RMSFit), are given in the tables below. The
last column in each table show how often the relative values larger than 6 ·RMSFit occur.

Integration Method MeanData RMSData MeanFit RMSFit Outside 6 ·RMSFit

Trapezium rule 4.11 ·10−5 1.004 ·10−3 4.74 ·10−5 7.54 ·10−4 0.36 %
Extended Simpson 2.84 ·10−5 1.525 ·10−3 6.87 ·10−5 1.12 ·10−5 0.51 %
Averaged Simpson 8.28 ·10−5 1.009 ·10−3 9.01 ·10−5 7.58 ·10−5 0.36 %
Modified Simpson 4.65 ·10−5 1.0102 ·10−3 5.18 ·10−5 7.62 ·10−5 0.35 %

Table B.1: Results of the Gaussian fit applied to the distribution of relative energy differences (far from
the shower core class) .

Integration Method MeanData RMSData MeanFit RMSFit Outside 6 ·RMSFit

Trapezium rule 1.59 ·10−5 1.82 ·10−4 1.44 ·10−5 1.43 ·10−4 0.25 %
Extended Simpson 5.81 ·10−6 2.82 ·10−4 6.78 ·10−6 2.14 ·10−4 0.27 %
Averaged Simpson 9.82 ·10−5 1.85 ·10−4 9.64 ·10−5 1.43 ·10−4 0.27 %
Modified Simpson 2.78 ·10−5 1.85 ·10−4 2.60 ·10−5 1.45 ·10−4 0.27 %

Table B.2: Results of the Gaussian fit applied to the distribution of relative energy differences (relative
distance class) .
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Integration Method MeanData RMSData MeanFit RMSFit Outside 6 ·RMSFit

Trapezium rule −4.54 ·10−5 3.70 ·10−4 −7.42 ·10−6 1.05 ·10−4 1.36 %
Extended Simpson −3.92 ·10−5 2.14 ·10−4 −4.98 ·10−5 1.65 ·10−4 0.75 %
Averaged Simpson 5.52 ·10−4 7.21 ·10−4 3.12 ·10−4 1.83 ·10−4 9.6 %
Modified Simpson 1.99 ·10−4 5.92 ·10−4 6.93 ·10−5 1.24 ·10−4 5.3 %

Table B.3: Results of the Gaussian fit applied to the distribution of relative energy differences (close to
the shower core class) .
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B.2 Digitization and Quantization Errors

B.2.1 Results of the close to the shower core and far from the shower core classes
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Figure B.1: Distributions of the quantization errors for the pulses from close to the shower core class.
The dominant peak observed in the distribution of the quantization errors (plot a) is gener-
ated by the digitization of the sampled amplitudes from the tail (plot d), especially at the
end of the signal (plot c). The errors spread towards high energies (plot b).
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Figure B.2: Distributions of the quantization errors for the pulses from far from the shower core class.
About 2% of the digitized samples are zero ((plot a) and their contribution is excluded from
the distribution of the quantization errors (plot b). About 12% of the sampled amplitudes
are smaller than 1 LSB, and most of them are taken from the tail (plot c). The errors are
mostly generated by the digitization of the sampled amplitudes from the end of the signal
(plot d), and are predominant at small energy deposits (plot e).
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B.2.2 Results of the relative distance class, high and low gain analysis
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Figure B.3: Distributions of the quantization errors for the pulses from the relative distance class, di-
gitized in the high gain mode. The quantization errors are uniformly distributed (plot a).
A negligible amount of samples (∼ 0.4%) are smaller in amplitude than 1 LSB (plot c).
The contribution of the tail is still significant (plot d), but it is uniformly distributed on the
energy spectrum (plot b).
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Figure B.4: Distributions of the quantization errors for the pulses from the relative distance class, digit-
ized in the low gain mode. The shape of the distribution (plot a) is similar with that produced
by the digitization of the pulses from close to the shower core class. The systematic effect
induced by the tail influences the quality of the energy reconstruction.
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B.3 Time Jitter Results

Monte Carlo class Jpp = 0ns Jpp = 0.25ns
Mean RMS Mean RMS

far from the shower core −1.521 ·10−2 1.87 ·10−2 −1.52 ·10−2 1.869 ·10−2

relative distance (in high gain) −1.244 ·10−3 1.024 ·10−3 −1.242 ·10−3 1.027 ·10−3

relative distance (in low gain) −1.08 ·10−2 3.199 ·10−3 −1.079 ·10−2 3.203 ·10−3

close to the shower core −7.78 ·10−3 1.477 ·10−3 −7.781 ·10−3 1.522 ·10−3

Table B.4: Time jitter analysis results for Jpp = 0ns and Jpp = 0.25ns .

Monte Carlo class Jpp = 0.5ns Jpp = 0.75ns
Mean RMS Mean RMS

far from the shower core −1.521 ·10−2 1.871 ·10−2 −1.52 ·10−2 1.875 ·10−2

relative distance (in high gain) −1.249 ·10−3 1.054 ·10−3 −1.247 ·10−3 1.061 ·10−3

relative distance (in low gain) −1.079 ·10−2 3.202 ·10−3 −1.08 ·10−2 3.203 ·10−3

close to the shower core −7.799 ·10−3 1.663 ·10−3 −7.805 ·10−3 1.86 ·10−3

Table B.5: Time jitter analysis results for Jpp = 0.5ns and Jpp = 0.75ns .

Monte Carlo class Jpp = 1ns Jpp = 2.5ns
Mean RMS Mean RMS

far from the shower core −1.521 ·10−2 1.877 ·10−2 −1.519 ·10−2 1.888 ·10−2

relative distance (in high gain) −1.248 ·10−3 1.103 ·10−3 −1.268 ·10−3 1.45 ·10−3

relative distance (in low gain) −1.08 ·10−2 3.204 ·10−3 −1.078 ·10−2 3.275 ·10−3

close to the shower core −7.8 ·10−3 2.079 ·10−3 −7.783 ·10−3 4 ·10−3

Table B.6: Time jitter analysis results for Jpp = 1ns and Jpp = 2.5ns .
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B.4 White Noise Analysis

The energy deposit spectrum is divided in slices of energy of 50,000 arbitrary units. The relative
values, obtained by applying equation 6.8, are filled into histograms. The mean and the width
of each distribution are extracted and plotted as functions of the corresponding slice of energy.
The following figures depict such plots, for different RMS values of the white noise.
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Figure B.5: The reconstruction results for RMS values of the white noise of 0.15 and 0.303 ADC chan-
nels.
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Figure B.6: The reconstruction results for RMS values of the white noise of 1 and 1.515 ADC channels.
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Figure B.7: The reconstruction results for RMS values of the white noise of 2 and 3 ADC channels.
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Figure B.8: The reconstruction results for RMS values of the white noise of 4 and 5 ADC channels.
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Figure B.9: The reconstruction results for RMS values of the white noise of 10 and 15 ADC channels.



76 Plots and Tables

B.5 Low Frequency Noise Analysis

The following tables give the reconstruction results achieved by the low frequency noise ana-
lysis. The relative values, obtained by applying equation 6.8, are filled into histograms, and the
resulting mean and width (RMS) are given for 15kHz (see subsection B.5.1) and for 100kHz
(see subsection B.5.2). The figures depict the relative values for the analysis in which the energy
deposit spectrum is divided in slices of energy of 50,000 arbitrary units.

B.5.1 Low Frequency Noise, 15 kHz

Monte Carlo class A = 5mV A = 10mV
Mean RMS Mean RMS

far from the shower core −7.31 ·10−3 1.84 ·10−2 −7.51 ·10−3 2.82 ·10−2

relative distance (in high gain) −4.12 ·10−3 9.30 ·10−4 −4.12 ·10−3 9.59 ·10−4

relative distance (in low gain) −3.90 ·10−3 4.53 ·10−3 −3.96 ·10−3 4.36 ·10−3

close to the shower core −2.57 ·10−3 3.07 ·10−3 −2.69 ·10−3 2.87 ·10−3

Table B.7: The relative values obtained for 15kHz low frequency noise, with 5mV and 10mV noise
amplitudes .

Monte Carlo class A = 20mV A = 30mV
Mean RMS Mean RMS

far from the shower core −7.73 ·10−3 2.79 ·10−2 −7.23 ·10−2 2.72 ·10−2

relative distance (in high gain) −4.14 ·10−3 9.53 ·10−4 −4.11 ·10−3 9.36 ·10−4

relative distance (in low gain) −3.97 ·10−3 4.29 ·10−3 −3.97 ·10−3 4.44 ·10−3

close to the shower core −2.67 ·10−3 2.87 ·10−3 −2.58 ·10−3 3.12 ·10−3

Table B.8: The relative values obtained for 15kHz low frequency noise, with 20mV and 30mV noise
amplitudes .

Monte Carlo class A = 50mV A = 100mV
Mean RMS Mean RMS

far from the shower core −7.17 ·10−3 2.63 ·10−2 −6.93 ·10−3 2.48 ·10−2

relative distance (in high gain) −4.09 ·10−3 9.70 ·10−4 −4.10 ·10−3 9.27 ·10−4

relative distance (in low gain) −3.83 ·10−3 4.56 ·10−3 −3.80 ·10−3 4.67 ·10−3

close to the shower core −2.60 ·10−3 3.12 ·10−3 −2.44 ·10−3 3.11 ·10−3

Table B.9: The relative values obtained for 15kHz low frequency noise, with 50mV and 100mV noise
amplitudes .
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Monte Carlo class A = 150mV A = 200mV
Mean RMS Mean RMS

far from the shower core −6.73 ·10−3 2.71 ·10−2 −6.89 ·10−3 3.03 ·10−2

relative distance (in high gain) −4.07 ·10−3 9.81 ·10−4 4.07 ·10−3 9.85 ·10−4

relative distance (in low gain) −3.70 ·10−3 4.82 ·10−3 −3.61 ·10−3 5.17 ·10−3

close to the shower core −0.002456 ·10 0.003119 ·10 −0.002397 ·10 0.003295 ·10

Table B.10: The relative values obtained for 15kHz low frequency noise, with 150mV and 200mV
noise amplitudes .
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Figure B.10: The reconstruction results for 15kHz low frequency noise with 5mV and 10mV noise
amplitudes.
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Figure B.11: The reconstruction results for 15kHz low frequency noise with 20mV and 30mV noise
amplitudes.



80 Plots and Tables

Energy deposit [arb.units]
0 1000 2000 3000 4000 5000 6000 7000 8000

3x10

re
la

ti
ve

 v
al

u
es

 (
re

al
-t

ru
e)

/t
ru

e

-0.007

-0.006

-0.005

-0.004

-0.003

-0.002

LFN 15 kHz, 50mV,  RELATIVE DISTANCE (High Gain)

(a)
Energy deposit [arb.units]

500 1000 1500 2000 2500
2x10

re
la

ti
ve

 v
al

u
es

 (
re

al
-t

ru
e)

/t
ru

e

-0.06

-0.04

-0.02

0

0.02

0.04

0.06
LFN 15 kHz, 50mV,  FAR FROM THE SHOWER CORE

(b)

Energy deposit [arb.units]
0 1000 2000 3000 4000 5000 6000 7000 8000

3x10

re
la

ti
ve

 v
al

u
es

 (
re

al
-t

ru
e)

/t
ru

e

-0.015

-0.01

-0.005

-0

0.005

0.01

LFN 15 kHz, 50mV,  RELATIVE DISTANCE (Low Gain)

(c)
Energy deposit [arb.units]

0 1000 2000 3000 4000 5000 6000 7000 8000
3x10

re
la

ti
ve

 v
al

u
es

 (
re

al
-t

ru
e)

/t
ru

e

-0.008

-0.006

-0.004

-0.002

0

0.002

LFN 15 kHz, 50mV,  CLOSE TO THE SHOWER CORE

(d)

Energy deposit [arb.units]
0 1000 2000 3000 4000 5000 6000 7000 8000

3x10

re
la

ti
ve

 v
al

u
es

 (
re

al
-t

ru
e)

/t
ru

e

-0.007

-0.006

-0.005

-0.004

-0.003

-0.002
LFN 15 kHz, 100mV,  RELATIVE DISTANCE (High Gain)

(e)
Energy deposit [arb.units]

500 1000 1500 2000 2500
2x10

re
la

ti
ve

 v
al

u
es

 (
re

al
-t

ru
e)

/t
ru

e

-0.06

-0.04

-0.02

-0

0.02

0.04

LFN 15 kHz, 100mV,  FAR FROM THE SHOWER CORE

(f)

Energy deposit [arb.units]
0 1000 2000 3000 4000 5000 6000 7000 8000

3x10

re
la

ti
ve

 v
al

u
es

 (
re

al
-t

ru
e)

/t
ru

e

-0.015

-0.01

-0.005

-0

0.005

0.01

LFN 15 kHz, 100mV,  RELATIVE DISTANCE (Low Gain)

(g)
Energy deposit [arb.units]

0 1000 2000 3000 4000 5000 6000 7000 8000
3x10

re
la

ti
ve

 v
al

u
es

 (
re

al
-t

ru
e)

/t
ru

e

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

LFN 15 kHz, 100mV,  CLOSE TO THE SHOWER CORE

(h)

Figure B.12: The reconstruction results for 15kHz low frequency noise with 50mV and 100mV noise
amplitudes.



B.5 Low Frequency Noise Analysis 81

Energy deposit [arb.units]
0 1000 2000 3000 4000 5000 6000 7000 8000

3x10

re
la

ti
ve

 v
al

u
es

 (
re

al
-t

ru
e)

/t
ru

e

-0.006

-0.005

-0.004

-0.003

-0.002

LFN 15 kHz, 150mV,  RELATIVE DISTANCE (High Gain)

(a)
Energy deposit [arb.units]

500 1000 1500 2000 2500
2x10

re
la

ti
ve

 v
al

u
es

 (
re

al
-t

ru
e)

/t
ru

e

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

LFN 15 kHz, 150mV,  FAR FROM THE SHOWER CORE

(b)

Energy deposit [arb.units]
0 1000 2000 3000 4000 5000 6000 7000 8000

3x10

re
la

ti
ve

 v
al

u
es

 (
re

al
-t

ru
e)

/t
ru

e

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

LFN 15 kHz, 150mV,  RELATIVE DISTANCE (Low Gain)

(c)
Energy deposit [arb.units]

0 1000 2000 3000 4000 5000 6000 7000 8000
3x10

re
la

ti
ve

 v
al

u
es

 (
re

al
-t

ru
e)

/t
ru

e

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004
LFN 15 kHz, 150mV,  CLOSE TO THE SHOWER CORE

(d)

Energy deposit [arb.units]
0 1000 2000 3000 4000 5000 6000 7000 8000

3x10

re
la

ti
ve

 v
al

u
es

 (
re

al
-t

ru
e)

/t
ru

e

-0.007

-0.006

-0.005

-0.004

-0.003

-0.002

LFN 15 kHz, 200mV,  RELATIVE DISTANCE (High Gain)

(e)
Energy deposit [arb.units]

500 1000 1500 2000 2500
2x10

re
la

ti
ve

 v
al

u
es

 (
re

al
-t

ru
e)

/t
ru

e

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

LFN 15 kHz, 200mV,  FAR FROM THE SHOWER CORE

(f)

Energy deposit [arb.units]
0 1000 2000 3000 4000 5000 6000 7000 8000

3x10

re
la

ti
ve

 v
al

u
es

 (
re

al
-t

ru
e)

/t
ru

e

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

LFN 15 kHz, 200mV,  RELATIVE DISTANCE (Low Gain)

(g)
Energy deposit [arb.units]

0 1000 2000 3000 4000 5000 6000 7000 8000
3x10

re
la

ti
ve

 v
al

u
es

 (
re

al
-t

ru
e)

/t
ru

e

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

LFN 15 kHz, 200mV,  CLOSE TO THE SHOWER CORE

(h)

Figure B.13: The reconstruction results for 15kHz low frequency noise with 150mV and 200mV noise
amplitudes.
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B.5.2 Low Frequency Noise, 100 kHz

Monte Carlo class A = 5mV A = 10mV
Mean RMS Mean RMS

far from the shower core −7.38 ·10−3 2.86 ·10−2 −7.46 ·10−3 2.965 ·10−2

relative distance (in high gain) −4.13 ·10−3 9.63 ·10−4 −4.12 ·10−3 9.70 ·10−4

relative distance (in low gain) −3.90 ·10−3 4.41 ·10−3 −4.02 ·10−3 4.96 ·10−3

close to the shower core −2.56 ·10−3 3.08 ·10−3 −2.74 ·10−3 3.33 ·10−3

Table B.11: The relative values obtained for 100kHz low frequency noise, with 5mV and 10mV noise
amplitudes .

Monte Carlo class A = 20mV A = 30mV
Mean RMS Mean RMS

far from the shower core −7.32 ·10−3 3.16 ·10−2 −3.53 ·10−3 3.92 ·10−2

relative distance (in high gain) −4.16 ·10−3 1.05 ·10−3 −3.99 ·10−3 1.11 ·10−3

relative distance (in low gain) −4.07 ·10−3 5.47 ·10−3 −2.53 ·10−3 6.16 ·10−3

close to the shower core −2.76 ·10−3 3.70 ·10−3 −1.60 ·10−3 4.05 ·10−3

Table B.12: The relative values obtained for 100kHz low frequency noise, with 20mV and 30mV noise
amplitudes .

Monte Carlo class A = 50mV A = 100mV
Mean RMS Mean RMS

far from the shower core 8.97 ·10−4 4.60 ·10−2 1.15 ·10−2 6.10 ·10−2

relative distance (in high gain) −3.63 ·10−3 1.38 ·10−3 −2.77 ·10−4 2.09 ·10−3

relative distance (in low gain) 3.15 ·10−4 7.77 ·10−3 7.10 ·10−3 1.31 ·10−2

close to the shower core 3.07 ·10−4 5.09 ·10−3 4.627 ·10−3 8.30 ·10−2

Table B.13: The relative values obtained for 100kHz low frequency noise, with 50mV and 100mV
noise amplitudes .
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Monte Carlo class A = 150mV A = 200mV
Mean RMS Mean RMS

far from the shower core 2.08 ·10−2 7.87 ·10−2 2.86 ·10−2 9.01 ·10−2

relative distance (in high gain) −2.09 ·10−3 3.20 ·10−3 −1.26 ·10−3 4.05 ·10−3

relative distance (in low gain) 1.45 ·10−2 1.92 ·10−2 2.17 ·10−2 2.53 ·10−2

close to the shower core 9.25 ·10−3 1.15 ·10−2 1.38 ·10−2 1.50 ·10−2

Table B.14: The relative values obtained for 100kHz low frequency noise, with 150mV and 200mV
noise amplitudes .
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Figure B.14: The reconstruction results for 100kHz low frequency noise with 5mV and 10mV noise
amplitudes.
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Figure B.15: The reconstruction results for 100kHz low frequency noise with 20mV and 30mV noise
amplitudes.
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Figure B.16: The reconstruction results for 100kHz low frequency noise with 50mV and 100mV noise
amplitudes.
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Figure B.17: The reconstruction results for 100kHz low frequency noise with 150mV and 200mV noise
amplitudes.
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I am grateful to Marc Brüggemann for his valuable hints, suggestions and encouragements

on my analysis, during tons of hours of discussions. He was a great help when nothing seemed
to work well. I want to thank him for the great receptivity and patience he had whenever I was
stuck in a problem, and for being daily a cheerful person.

I am also grateful to Dr. Wolfgang Walkowiak for the big help he gave me developing an
object-oriented package, necessary for my simulations. For many useful discussions about the
FADC DAQ system, I am indebted to all my colleagues from the KASCADE-Grande group
(University of Siegen), but especially to Yuri Kolotaev, Sven Over and Dirk Zimmermann. Also,
many thanks to Dr. Andreas Haungs, Dr. Florin Badea, Ralph Glasstetter, Dr. Harald Schieler and
Dr. Jurgen Wochele (from the Forschungszentrum Karlsruhe) for presenting me the physics of
the KASCADE-Grande experiment and providing me with useful suggestions about my analysis.

Also, I acknowledge Dr. Adrian Niculae, Dr. Wolfgang Walkowiak, Marc Brüggemann, Flo-
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