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CHAPTER 1

Introduction

1.1 The Higgs Boson and the Standard Model

The Standard Model (SM) of particle physics is a well-established theory that describes the known
fundamental particles and three of the four fundamental interactions: the electromagnetic, weak, and
strong forces, while gravity is not included. The particle content is divided into fermions (quarks and
leptons, which make up matter) and bosons (force carriers such as the photon, gluon, and the W and
Z bosons). Despite its predictive power, the SM leaves several profound questions unanswered, for
example the origin of dark matter or the matter—antimatter asymmetry in the universe [1].

One of the key achievements of the SM is the Higgs mechanism, which explains how elementary
particles acquire mass through spontaneous electroweak symmetry breaking [2]. In 1964, Peter Higgs
and others proposed the existence of a scalar particle—the Higgs boson—as a manifestation of this
mechanism [3].

The discovery of the Higgs boson in 2012 by the ATLAS and CMS collaborations at CERN marked
a historic milestone in modern physics [4]. Its observation confirmed the last missing piece of the
Standard Model (Fig. 1.1), validating decades of theoretical and experimental work. Nevertheless,
measuring the properties of the Higgs boson with high precision remains one of the primary objectives
of the High Energy Physics (HEP) research program, as any deviation from SM predictions could
provide evidence for new physics beyond the Standard Model.

Among the various production and decay modes of the Higgs boson, associated production with a
top—antitop quark pair (1fH) plays a crucial role, as it allows for a direct measurement of the top—Higgs
Yukawa coupling—a fundamental parameter that controls the interaction between the Higgs boson
and the heaviest known elementary particle, the top quark.

The measured mass of the Higgs boson is 125.09 +0.21(stat.) +0.11(syst.) as reported in the latest
combination of measurements from the ATLAS and CMS collaborations [5]. For a Higgs boson with
this mass it is expected that the decay into a pair of bottom quarks (H — bb) is the most common. In
contrast, the decay into charm quarks (H — ¢¢) is much rarer and experimentally challenging due to
large background contributions. Improving the sensitivity to this decay is therefore essential to study
the coupling of the Higgs boson to second-generation quarks, a largely unexplored sector of the SM

[6].
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Figure 1.1: The fundamental particles whose interactions are described in the Standard Model of particle physics

(1]

1.2 The Large Hadron Collider and the ATLAS Detector

To explore rare processes, such as H — c¢ decays, experiments require a high-energy, high-luminosity
particle collider combined with a sophisticated detector system. The Large Hadron Collider (LHC) at
CERN is currently the world’s most powerful particle accelerator, designed to deliver proton—proton
collisions at a center-of-mass energy of up to 14 TeV. It consists of a 27 km circular tunnel located
45-170 meters underground, reusing the former LEP tunnel. Two counter-rotating proton beams are
accelerated using superconducting magnets and brought to collision at four interaction points, which
host the major experiments ATLAS, CMS, ALICE, and LHCb [7].

ATLAS is one of two general-purpose detectors optimized for a wide range of physics goals, from
precision measurements of the Standard Model to searches for new phenomena, such as supersymmetry.
As illustrated in Fig. 1.2, ATLAS employs a layered detection system consisting of an inner tracking
detector inside a solenoidal magnetic field, electromagnetic and hadronic calorimeters located outside
the solenoid, and a muon spectrometer embedded in large toroidal magnetic fields. This configuration
enables precise measurement of particle trajectories, energies, and momenta across a broad kinematic
range [8].

The experimental environment at the LHC presents significant challenges: at design luminosity,
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Figure 1.2: Cut-away view of the ATLAS detector [8, p. 4]

there are up to 40 million proton—proton collisions per second, resulting in extremely high event rates.
In high-energy hadron collisions, it is primarily the quarks and gluons inside the protons that interact,
leading to a large variety of final states. A dominant contribution comes from strong-interaction
(Quantum Chromodynamics, QCD) processes such as multijet production (e.g. gg — ¢¢g), which
form a major background for many analyses [8]. Since quarks and gluons cannot be observed as free
particles, they appear in the detector as collimated sprays of hadrons, known as jets. To extract rare
signatures with jets, such as H — c¢¢, and to distinguish them from the large amount of expected
background processes with similar final states, advanced techniques in event reconstruction, flavor
tagging (identifying the quark flavor that initiated a jet), and machine—learning—based classification
are essential.

1.3 Thesis Scope and Objectives

This thesis focuses on machine learning approaches for classifying ¢7H events with Higgs decays into
charm quarks (H — ¢¢) against dominant backgrounds from H — bb and ¢7 production. To suppress
the immense amount of expected QCD multi-jet background, this work is only considering processes
with exactly one electron or muon in the final state.

The aim of this thesis is to evaluate the performance of different classification models, to investigate
the relative importance of input features, and to explore how well these models can separate signal
from background in a setup similar to current ATLAS analyses.

By applying modern machine learning techniques, this thesis contributes to efforts to measure
the Higgs couplings more precisely, especially for second-generation quarks, where experimental
knowledge is still limited.






CHAPTER 2

Physics Processes and Input Data

2.1 Signal Process

The signal process studied in this thesis is the associated production of a Higgs boson with a top—antitop
quark pair, where the Higgs boson decays into a charm—anticharm quark pair:

pp— ttH, H— cC. 2.1

This process is referred to as t7H(c¢). It is particularly challenging to identify due to the small
branching ratio of 3 % for the Higgs—boson decay to charm quarks [9] and the difficulty of identifying
charm jets, referred to as c—tagging.

Fig. 2.1(a) shows a representative leading-order sketch illustrating this signal process. Both top
quarks decay into a bottom quark and a W boson, which has a branching ratio of 99.7 % [10].
According to the event preselection, which will be described in more detail later, each event contains
exactly one electron or muon. A total of six jets is expected in the final state.

2.2 Background Processes
The ttH(c¢) signal process is challenged by two major background processes. The dominant one is

pp—tt, (2.2)

commonly referred to as ¢7 production. It also contains two top quarks but no Higgs boson is produced.
This typically results in four jets in the final state. A representative leading-order sketch is shown in
Fig. 2.2(a), while Fig. 2.2(b) illustrates a next-to-leading-order (NLO) process in which a gluon is
emitted from one of the top quarks and subsequently splits into a pair of charm quarks. This NLO
process leads to six jets in the final state, making it indistinguishable from the signal process in terms
of jet multiplicity and jet flavor.

The second relevant background process considered in this analysis is

pp— ttH, H— bb, (2.3)
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referred to as t7H(bb). In contrast to the signal, the Higgs boson decays into a pair of bottom quarks
rather than charm quarks, but the total number of expected jets remains six. A leading-order sketch is
shown in Fig. 2.1(b).

(a) ttH(c?) (b) tFH(bb)

Figure 2.1: Leading-order sketches of t7H(c¢) and t7H (bb)

(a) 1t (b) ¢ (NLO)

Figure 2.2: Leading-order and next-to-leading-order sketches of ¢7

Other minor background contributions—such as t7Z, ttW, tW, and W + jets—were neglected in this
study. Based on independent simulations passing the same preselection, these processes are expected
to contribute on the order of 2.35 - 10° events, compared to 2.87 - 10° events from the dominant 77
background [11]. Their overall impact is therefore subdominant, and, in contrast to the challenging
separation between t7H(c¢) and t7H(bb), whose only difference is the flavor of the jets produced,
these backgrounds are generally easier to distinguish from the signal process.
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2.3 Monte Carlo Data Set and Preselection

The data set used in this analysis consists of Monte Carlo-simulated events, labeled as either t7H (cc),
ttH(bb), or tf. These events are weighted to correspond to the full Run—2 integrated luminosity of
140 fb! at a center-of-mass energy of 13 TeV [12].

The cross section for t7H production is

o(ttH) = 0.51 pb, (2.4)
as reported in [13], compared to
o (tt) = 843 pb (2.5)
for inclusive ## production [14]. Taking into account the branching ratios
BR(H — ¢¢) =3 %, (2.6)
BR(H — bb) ~ 58 %, 2.7

for the Higgs—boson decays into charm and bottom quarks, respectively [9], the following weighted
number of events is obtained after applying the preselection defined below:

Niir(ce) = 124, (2.8)

N by = 4424, (2.9)

N,; =2869099, (2.10)

Ngg = Nyip(cc) = 124, (2.11)

kag = NtfH(bE) + Ntf =2 873 523 . (212)

These numbers are affected by a statistical uncertainty of less than 1 % [11]. The resulting
signal-to-background ratio is extremely small:

Ngg, 124

= ~43-107° . 2.13
Ny 2873523 (2.13)

All events in the data set are required to satisfy the following preselection criteria:
* Exactly one electron or muon must be present in the event.
» Each event must contain at least five reconstructed jets.

* At least two jets must fulfill a b—tagging requirement (at least loose b—tagging), as defined in
Section 2.5.

2.4 Feature Definitions

Each event in the data set contains up to ten reconstructed jets. These jets are ordered by their
transverse momentum p in descending order; i.e., jet 1 has the highest p and jet 10 the lowest.
For each jet, the following features are provided:
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 kinematic features: energy E, transverse momentum p, pseudorapidity 7, and azimuthal
1
angle ¢

« flavor-tagging probabilities: probability for the jet to originate from a b—quark (p,,), c—quark
(p.). light-flavor quark (p,,), or T—lepton (p,)

* true flavor: the ground—truth jet flavor from simulation.
In addition, the following event—level features are included:

* number of reconstructed jets 7
* number of b-tagged jets (1) and light jets (n,,) based on flavor tagging
« missing transverse energy (MET) EX™ and azimuthal angle ¢™* of the MET vector

* true process label (either t7H (c¢), ttH(bb), or t7).

2.5 Flavor-Tagging Information

The flavor-tagging probabilities, p,, p.., p,, and p_, are provided by the transformer-based flavor—
tagging algorithm GN2v01 [17]. Two discriminants, D, and D ., are defined as

Dy =tot (1) 1
DCZIOg(fb‘Pb"‘fT‘Prfc(l—fb—fr)'Pu) ’ 219
where
f.=02, f,=0.01 (2.16)
are parameters used for b—tagging and
f» =03, f.=0.05 (2.17)

for c—tagging [17].
The discriminants are employed to assign each jet to one of seven categories, defined in Table 2.1
and illustrated in Fig. 2.3.

P "ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the
detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis
points upwards. Polar coordinates (r, ¢) are used in the transverse plane, ¢ being the azimuthal angle around the z-axis.
The pseudorapidity is defined in terms of the polar angle 6 as = —Intan 6/2 and is equal to the rapidity y = % In gifj_

in the relativistic limit. Angular distance is measured in units of AR = 4/ (Ay)2 + (A¢)2." [15]
2 The MET vector is defined as the negative vector sum of all reconstructed transverse momenta in the event, and it provides
sensitivity to non-interacting particles such as neutrinos [16].




2.5 Flavor-Tagging Information

Condition Category Number
D, > 2.669 tight b-tagged 6
1.892 < Dy, < 2.669 medium b-tagged 5
0.884 < D, < 1.892 loose b-tagged 4
D, <0.884 and D_ > 3.958 tight c-tagged 3
D, <0.884 and 2.090 < D. <3.958 medium c-tagged 2
D, <0.884 and 0.503 < D, <2.090 loose c-tagged 1
D, <0.884 and D, < 0.503 untagged 0

Table 2.1: GN2vO1 flavor—tagging categories [17]

c-tag score GN2v01

c-tight (Cr)
b-jet: 0.63%
c-jet: 10%
light-jet: 0.01%
10% T-jet: 0.08%

c-efficiency c-medium (Cyp) B

b-jet: 5.4% —_— A
c-jet: 20% C
light-jet: 0.36% b-70-77% b-65-70% b-65%
30% T-jet: 1.6% b-jet: 7% b-jet: 5% b-jet: 65%
c-efficienc . c-jet: 3.9% c-jet: 1.1% c-jet: 0.99%
v c-loose (Cr) light-jet: 0.18% light-jet: 0.03% light-jet: 0.03%
b-jet: 7.1% T-jet: 1.2% T-jet: 0.019% T-jet: 0.011%
c-jet: 20%
light-jet: 4.9%
50% T-jet: 11%
c-efficiency Untagged (N)
b-jet: 9.9%
c-jet: 44%
light-jet: 95%
T-jet: 86%

7% 70% 65% b-tag score
b-efficiency b-efficiency b-efficiency

Figure 2.3: Binning scheme in the GN2v01 c—tag score (D) vs. b—tag score (D, ) plane (efficiency for jets of a
given true flavor to be categorized into the given category) [18]






CHAPTER 3

Initial Manual Approaches for Process
Separation

3.1 Exploratory Feature Analysis

Before applying machine—learning techniques, an exploratory analysis of selected features is performed
to identify variables with potential discriminative power between the signal and background processes.
Visualizing these features provides insight into their distributions and possible separability.

As discussed in Chapter 2, the processes differ in the number of jets of specific flavors. Therefore,
the multiplicities of b—jets (n;,) and light jets (n,,) are considered as initial separation criteria. Their
normalized distributions are shown in Fig. 3.1.

[ riH(ce) [ riH(ce)
tiH(bb) tiH(bb)
0.81 a 0.4 —
0.6 0.3 1
0.4 0.2
0.2 0.1
0.0 : : : — 0o . —
2 3 4 5 6 7 0 2 4 6 8 10 12
n n

Figure 3.1: Distributions of b—jet and light jet multiplicities for signal and background processes, normalized to
unity

The distribution of n,, is similar across the three processes, indicating limited discriminative power.

For both t#H (c¢) and tf, most events contain exactly two b—jets, consistent with Chapter 2, since
each top quark is expected to decay into a bottom quark and a W boson. The absence of events with

11



Chapter 3 Initial Manual Approaches for Process Separation

fewer than two b—jets is a direct consequence of the preselection requirement that every event must
contain at least two b-tagged jets.

In contrast, the t7H (bb) distribution peaks at n,, = 3, with a substantial number of events containing
four b—jets. The additional b—jets originate from the Higgs—boson decay. These observations suggest
that n,, can serve as a simple first criterion to separate t7H (bb) events from t7H (c¢) and t7 events.

While many kinematic features exhibit similar distributions across the three processes, the transverse
momenta pr ; and pr , of the leading and subleading jets—i.e., the two jets with the highest pr—show
noticeable differences. Their normalized distributions are presented in Fig. 3.2.

1 tiH(co) 0.0124 1 tiH(co)

0.007 A 1iH(bb) 1iH(bb)
gl |—; 0.010 1 | —;
0.006 A

0.005 A 0.008 -

0.004 ~ 0.006 -

0.003 4
0.004 -

0.002 4

0.001 00021

0.000 -

0.000 T
0 500

Py, (GeV) Pp,(GeV)
Figure 3.2: Distributions of p ; and pr , for signal and background processes, normalized to unity

For both t7H(c¢) and t7H (bb), the pr,; distribution peaks at approximately 110 GeV. In contrast,
the 7 distribution peaks at a lower value of about 90 GeV and exhibits an additional shoulder at higher
transverse momenta in the range of 300-500 GeV, for which no clear explanation could be found. The
P, distributions follow similar shapes but are shifted to lower momenta, as the subleading jet always
has a lower py than the leading jet.

This high-py shoulder could act as a discriminating feature between ¢f events and those from
ttH (c¢) or ttH(bb) processes.

3.2 Jet-Pair Combinations for Higgs Reconstruction

The invariant mass of two jets i and j is defined as

mi}':J(pi-'-pj)“(pi-'-pj),u’ (31)

where p; and p; denote the four-momenta of the jets. In terms of their energies E;, E; and
three-momenta p;, p;, this expression becomes

m;j = \/(Ei +E))” - |, +17j|2 (3.2)

12
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Fig. 3.3 shows the dijet invariant mass of the two leading true c—jets in t7H (c¢), and, for comparison,
the two leading true b—jets in t7H (bb).

3 ¢, tiH(cc) 0.007 b, tiH(bb)
0.016 A

0.014 0.006 -

0.012 A 0.005

0.010 0.004

0.008 A
0.003 1
0.006 -
0.002 1
0.004

0.002 4 0.001

0.000 - 0.000

150 0 50 100 150 200 250 300
m(GeV) m(GeV)

Figure 3.3: Distributions of the dijet invariant mass of the two leading true c—jets in 17H (¢€) and the two leading
true b—jets in ttH (bb), normalized to unity

The c—jet—mass distribution exhibits a pronounced peak around the Higgs—boson mass of ~ 125 GeV,
since almost all c—jets in the signal process originate from Higgs decays.

In contrast, the b—jet—mass distribution shows the same Higgs peak overlaid with an additional
high-mass component. This tail is likely caused by b—jets from top—quark decays (t — Wb), which
tend to have higher transverse momenta.

To study which jet pairs (i, j) are consistent with a Higgs decay, all possible combinations

ij=1,...,10, i<j, (3.3)

are considered in Fig. 3.4. For each combination, the number of events with

110 GeV < m;; < 140 GeV 34

is counted. This mass window corresponds to the Higgs—boson region.

In general, the decay of a high-mass particle such as the Higgs boson tends to produce jets with
relatively high transverse momenta. Consequently, jet pairs falling into the Higgs—mass window are
often dominated by high-p jets (low indices /). The overall patterns are similar for tfH(c¢) and
ttH(bb), but small differences compared to ¢7 are visible—for example, for the combinations (1, 6),
(2, 3), and (2, 4). Interestingly, the (1, 2) combination is not the most promising for reconstructing
the Higgs boson in either t7H (c¢) or ttH(bb) events, since the leading jets often originate from the
top—quark decays rather than the Higgs decay.

These observations indicate that the differences between the processes are very subtle, and no
single jet combination provides both a high efficiency for reconstructing the Higgs boson and a strong
separation between tfH and tf events. Selected dijet masses from this study will be included as
additional features in the machine—learning models introduced later.

13
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1

110 GeV <m,_ <140 GeV

[ tiH(ce)

0.06
0.05
0.04
0.03
0.02
0.01
0.00

jet combination

1

110 GeV <m,_ < 140 GeV

1iH(bb)

0.07

0.06

0.05
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jet combination

110 GeV <m,_ <140 GeV

1

| m— 7
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jet combination

Figure 3.4: Number of events with dijet masses in the Higgs—mass window for all jet combinations, normalized

to unity
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3.3 Performance Metrics

Evaluating and comparing the performance of classification algorithms requires clearly defined
performance metrics. For binary classification, the following quantities are used:

* true positives (7 P): signal events correctly classified as signal
« false negatives (F'N): signal events incorrectly classified as background
« false positives (F P): background events incorrectly classified as signal

* true negatives (7T N): background events correctly classified as background.
From these quantities, the following metrics can be computed:

* signal efficiency:

TP
iy = ———— 35
“ie = TPy FN 3-3)
* signal purity:
TP
P,,=—— 3.6
¢ TP+FP (36)
* binary accuracy:
TP+TN
Acc = . (3.7)
TP+TN+FP+FN
For multiclass classification with K classes, k = 1,.. ., K, the multiclass accuracy is defined as
K .
_; N(predicted = k A true = k
Ay = 221 P ) (3.8)

N

otal

To also calculate a binary accuracy for multiclass classification, both ¢7 and t7H (bb) are treated as
background in this case.

The significance Z of a binary classification is calculated from the number of signal events S
correctly classified as signal and the number of background events B misclassified as signal. The
approximated formula reads

S S _ TP
VB VFP'

yielding a number in units of standard deviations [19].

(3.9)

15
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<400 GeV

ttH(cc) it

Figure 3.5: Baseline manual decision tree for process classification

3.4 Baseline Classification without Machine Learning

Based on the feature observations discussed in this chapter, a simple manual classification approach is
implemented as a reference for later comparison with machine—learning methods. The structure of the
resulting two-step decision tree is illustrated in Fig. 3.5.

In the first step, t7H (bb) events are separated from t7H (c¢) and 7 events using the b—jet multiplicity
ny, as motivated by Fig. 3.1. Since most 7H(c¢) and tf events contain exactly two b—jets, while
ttH(bb) events often contain three or more, the threshold

Np eyt =3 (3.10)

is applied.

In the second step, 1fH (c¢) events are distinguished from #7 events by exploiting the differences in
the leading-jet transverse-momentum distribution shown in Fig. 3.2. Leading jets in 7 events tend to
have higher pt values than those in 17H (c¢) events, motivating the cut

pT,l,cut =400 GeV . (311)

This baseline approach achieves an accuracy of 0.42 for signal-background classification. The full
set of performance metrics is summarized in Table 3.1.

Given the small signal-to-background ratio of 4.3 - 107> obtained in Section 2.3, the resulting
significance of 0.08 is very low. This value will serve as a baseline for evaluating the improvement
achieved by machine—learning—based classifiers in later sections.

16



3.4 Baseline Classification without Machine Learning

Significance 0.08

Binary accuracy 0.42
Multiclass accuracy  0.12
Signal efficiency 0.84
Signal purity 6.3-107°

Table 3.1: Performance metrics of manual decision tree

17






CHAPTER 4

Random Forest Classification and Feature
Importance Analysis

4.1 Random Forest with Full Feature Set

The random forest (RF) algorithm is an ensemble learning method that combines multiple decision
trees to improve classification performance and reduce overfitting compared to individual decision
trees. Each tree is trained on a bootstrap sample of the data, and feature selection at each split
introduces additional randomness, resulting in a diverse set of trees. The final prediction is obtained
by majority voting over all trees in the forest [20].

One key advantage of random forests is their ability to provide an estimate of feature importance,
which reflects how strongly each input variable contributes to the classification. In practice, this is
computed from how often and how effectively a feature is used to split the data within the trees. The
values are normalized so that all importances add up to unity, meaning that a value of 0.035 indicates
that the feature accounts for about 3.5 % of the overall importance across all features. This makes RF
particularly suitable for analyzing which features are most discriminative for the processes considered
in this study.

First, a random forest is trained to classify the three studied processes using the complete set of
features introduced in Section 2.4 (excluding true flavor). The RF classifier is implemented using the
scikit—learn library [21] with 100 decision trees which is the default setting in recent versions. This
value is chosen as it provides a good trade-off between model stability and computational efficiency.
Increasing the number of trees typically improves performance slightly but at the cost of longer training
time, while reducing the number may lead to less robust results.

The performance metrics of this process classification are summarized in Table 4.1. Both binary
and multiclass classification yield a significance of 0.11, which represents an improvement over the
baseline value of 0.08 from Section 3.4.

Fig. 4.1 illustrates the feature importance for the full feature set. The distribution is dominated by
flavor-tagging—based features, with the top six being p.. |, n,, p.2> Pc3s Pea @nd p,. 5. This aligns
with the heuristic criteria used in the manual decision tree (Section 3.4), where the b—jet multiplicity
n,, served as the primary discriminant.

Furthermore, feature importance generally decreases with increasing jet index. This is expected, as
many events do not contain all ten jets, resulting in features of higher-index jets being set to zero and
thus contributing little to the classification.
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Chapter 4 Random Forest Classification and Feature Importance Analysis

Binary Multiclass
Significance 0.11 0.11
Binary accuracy 0.95 0.88
Multiclass accuracy 0.82
Signal efficiency 0.32 0.52
Signal purity 29-107* 1.8-107*

Table 4.1: Performance metrics of random forest with full feature set
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Figure 4.1: Relative feature importance of random forest with full feature set (binary classification)

4.2 Random Forest without Flavor-Tagging Features

To assess the discriminative power of purely kinematic features, all flavor-tagging—based variables are
excluded from training. Specifically, the following features are removed:

N> My Ppis Peis Puyi> Pri» 8= 1,00, 10. 4.1)

The feature—importance distribution shown in Fig. 4.2 highlights the transverse momenta of the
leading and subleading jets, py | and py ,, among the three most important features. This observation
is consistent with the shape differences in their distributions discussed in Fig. 3.2 and supports the
heuristic use of pr ; as a discriminant in the second step of the manual decision tree (Section 3.4).

However, random forests are generally limited in their ability to exploit certain physics features,
such as invariant masses of jet combinations, which are often crucial for distinguishing signal from
background in high-energy physics. Therefore, the subsequent analysis focuses on optimizing the
performance of neural network classifiers, which are better suited to capture complex, non-linear
correlations among features.
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4.2 Random Forest without Flavor-Tagging Features
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Figure 4.2: Relative feature importance of random forest without flavor—tagging features (binary classification)
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CHAPTER D

Neural Network Classification

5.1 Neural Network Architecture and Training Performance

Artificial neural networks (NNs) are a class of machine—learning algorithms inspired by the structure
and functioning of biological neural systems. They consist of interconnected layers of nodes (neurons),
where each connection is associated with a weight that is iteratively adjusted during training to
minimize a given loss function. Through this process, NNs are capable of modeling highly non-linear
relationships between input features and target labels, making them particularly suitable for complex
classification tasks [22].

In this work, a feed-forward neural network is implemented using the scikit—learn library [21].
The optimized architecture consists of three hidden layers with 120, 60, and 30 neurons, respectively.
Between each pair of hidden layers, dropout layers are inserted to reduce overfitting by randomly
deactivating a fraction of neurons during training. This architecture was chosen empirically to provide
a good balance between model complexity, stability, and computational efficiency. The network is
trained with the Adam optimizer and uses binary cross—entropy or categorical cross—entropy as loss
function, depending on whether binary or multiclass classification is performed.

Since the feature analysis in Section 4.1 indicated that features corresponding to jets with high
indices contribute negligibly to classification, all features of jets 7-10 are excluded. This reduces
dimensionality, accelerates training, and forces the network to focus on more discriminative features.

Fig. 5.1 shows the evolution of training and test score as a function of epochs for multiclass
classification. Both scores increase rapidly during the first five epochs and then flatten, indicating
convergence. The training is performed for a fixed number of 30 epochs, as no further improvement is
observed after this point.

Interestingly, the test score consistently exceeds the training score by around 0.5 %. This effect can
be explained by dropout regularization: dropout is applied only during training, which introduces
noise and makes the optimization problem more challenging. In contrast, the evaluation on the test
set uses the full network without dropout, resulting in more stable predictions and slightly higher
performance.

Note that the training and test scores in Fig. 5.1 refer to unweighted batch accuracies during training
and should not be confused with the event-weighted accuracy used for physics performance evaluation.
The latter, together with other performance metrics, is summarized in Table 5.1.
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Figure 5.1: Learning curve of neural network (multiclass classification)
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Binary Multiclass
Significance 0.12 0.12
Binary accuracy 0.93 0.88
Multiclass accuracy 0.83
Signal efficiency 0.42 0.55
Signal purity 2.7-107% 2.0-107*

Table 5.1: Performance metrics of neural network
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5.2 Feature Augmentation for Performance Optimization

Both binary and multiclass classification achieve a significance of 0.12, which corresponds to a
slight improvement compared to the random forest result of 0.11.

5.2 Feature Augmentation for Performance Optimization

A common strategy to enhance the performance of neural networks is feature augmentation, where
additional input variables are derived from existing features if they are expected to improve the
discriminative power between signal and background.

As a first approach, dijet—mass information is considered (Section 3.2). For each event, the invariant
mass m;; of selected jet pairs (i, j) is computed and added as an additional feature. The jet pairs
chosen for this purpose are (1,2), (1,3), (1,4), (1,5), (1,6), (2,3), (2,4), (2,5), (3.4), (3,5), and (4,5), as
they contain most of the combinations relevant for Higgs decays. The selected pairs are highlighted in
yellow in Fig. 5.2, which shows the distribution for the 17H (c¢) process as an example.

110 GeV < m; < 140 GeV

[ tiH(ce)

0.06

0.05 A

0.04 A

0.03 A

0.02 A

0.01 A

0.00 -
jet combination

Figure 5.2: Number of events with dijet masses in the Higgs—mass window (selected combinations, normalized
to unity)

As a second modification, the logarithm of the leading-jet transverse momentum,

log(pr1) » (5.1)

is introduced to further exploit the differences in the transverse-momentum distributions observed in
Section 3.1. The high-p ; shoulder present in the #7 distribution indicates that events with unusually
large pr ; are more likely to originate from the background process.

By taking the logarithm, the dynamic range of p ; is compressed, allowing the network to more
effectively distinguish between low- and high-momentum events. This transformation can enhance the
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Chapter 5 Neural Network Classification

sensitivity of the classifier to subtle differences in the kinematic distributions, potentially improving
its overall performance. Fig. 5.3 compares the distributions of pr ; and log(pr ;) for signal and
background processes.

1 siH(co) M 1 ()
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Figure 5.3: Distributions of pr ; and log(pr ;) for signal and background processes, normalized to unity

The impact of both feature augmentations on classification performance is summarized in Table 5.2.
Compared to the initial configuration in Table 5.1, no significant improvement is observed in any
metric; in particular, the significance remains at 0.12. This indicates that the neural network is already
capable of capturing the relevant correlations between the original kinematic variables and the target
classes, even without these explicit feature transformations.

Dijet masses log(py ;)

Significance 0.12 0.12
Binary accuracy 0.87 0.89
Multiclass accuracy 0.81 0.83
Signal efficiency 0.57 0.53
Signal purity 2.0-107* 2.1-107*

Table 5.2: Performance metrics of neural network with extended feature set (multiclass classification)

5.3 Classification Results

To visualize the separation capability of the unmodified neural network discussed in Section 5.1, the
output probabilities for the classes t7H (c¢) and t7H(bb) are plotted against each other in Fig. 5.4. For
ttH(ccC) events, a high density is observed in the lower-right corner of the plot, corresponding to high
ttH (c¢) probability and low t7H (bb) probability. A smaller cluster of t7H (c¢) events is also visible
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5.3 Classification Results

in the lower-left corner, where both class probabilities are low, reflecting cases where the network
assigns low confidence to both Higgs hypotheses. Conversely, most t7H (bb) events are located in
the upper-left region, where the predicted t7H (bb) probability is high. Events from ¢7 are mostly
concentrated in the lower-left corner, where both class probabilities are low. These patterns indicate
that the network discriminates t7H (bb) from tf more effectively than t7H(c¢) from t7.

Given this observation, the trained network could also be used to design a t7H (bb) measurement,
however, this capability will not be explored further within the scope of this thesis, which focuses on

1TH (c¢).
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Figure 5.4: Neural network output probabilities for t7H (c¢) and t7H(bb) for the three processes

The distribution of p,;f(.¢). the neural network output probability for the signal class, is shown in
Fig. 5.5 for all three processes. As expected, events from the t7H (cc¢) process exhibit an approximately
uniform distribution across the entire range, reflecting the model’s uncertainty in distinguishing
some signal-like features from background-like ones. In contrast, t7H(bb) and t7 events are strongly
concentrated at low p,;y . values, indicating that the network effectively assigns them a low
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Chapter 5 Neural Network Classification

probability of being 17H(c¢). The vertical line marks the optimal cut at p, 7 (.¢) = 0.50, which is
used to calculate the significance of 0.12.

1 iH(cc)
tiH(bb)
[ —

0.0 0.2 0.4 0.6 0.8 1.0
ptiH(Cé)

Figure 5.5: Distribution of p,; () for the three processes, normalized to unity

For a more detailed analysis, the significance can also be evaluated on a bin-by-bin basis using 20
bins. For each bin 7, the significance contribution is defined as

S;
Z = (5.2)

1 \/E ’
where S; and B; denote the number of signal and background events in bin 7, respectively.

In many similar ATLAS analyses (e.g., VH(cé) or tiH(bb)), the classifier’s output score is often
used directly as a discriminant instead of applying a hard cut. This allows the significance to be
extracted continuously across the score range, giving a more complete picture of the network’s
performance [11].

The combined bin-wise significance is then:

(5.3)

This bin-based approach improves the overall significance compared to a single cut and yields a
result comparable to the binary classification performed in a W({v)H (c¢) analysis using a boosted
decision tree (neglecting systematic uncertainties) [11], which reported:

Zwies) = 0.16.. (5.4)
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CHAPTER O

Higgs Candidate Classification

6.1 Labeling Jets as Higgs Candidates

To identify c—jets in t7H (c¢) events that most likely originate from the Higgs—boson decay, a jet-level
classification task is introduced. Since the dataset does not provide explicit labels indicating whether
a jet originates from a Higgs boson, a dedicated labeling procedure is required. This procedure is
implemented in three steps:

1. Event selection: Only events labeled as t7H (c¢) by the simulation are considered.

2. Jet preselection: Within these events, jets 1-6 are examined, and only those labeled as true
c—jets are retained.

3. Invariant mass criterion: For events with at least two c—jets passing the previous step, the
invariant mass of the two leading c—jets is calculated. If this dijet mass satisfies

110 GeV < m;; < 140 GeV , (6.1)
the two leading jets are labeled as Higgs candidates.

The full labeling logic is visualized in Fig. 6.1. The resulting labels are used for training a jet-level
neural network to distinguish jets originating from Higgs—boson decays from all other jets. This
Higgs candidate classification network employs the same architecture as the process—level network
introduced in Section 5.1: three hidden layers with 120, 60, and 30 neurons, combined with dropout
layers for regularization. Training is performed using the Adam optimizer with binary cross—entropy
loss.

6.2 Classifying Jets as Higgs Candidates

The classification scheme for identifying Higgs candidate jets mirrors the logic of the labeling
procedure and consists of three main steps, illustrated in Fig. 6.2:
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Chapter 6 Higgs Candidate Classification
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Figure 6.1: Jet-labeling scheme for Higgs candidate identification

1. Event—level prediction: The event is first classified using the neural network described in
Section 5.1. Only events predicted as t7H (cc) are considered for further processing.

2. Jet filtering: For these events, jets 1-6 are required to pass at least a loose c—tagging threshold
according to the GN2v01 flavor-tagging algorithm introduced in Section 2.5.

3. Candidate prediction: The remaining jets are evaluated by the Higgs candidate classification
network, which assigns each jet a probability of originating from the Higgs—boson decay.

¢ jets 1-6 from events Hi didat
_ = oyent ; ) i ndi
events | ev.?.n i classified as (7H(ct) flavor jettagged as ¢ glgs Cfa i ate Higgs
—_ —_—

classification tagging classitication candidate
NN NN

jets from events
classified as #H{(bb)
or i

jet not tagged as ¢

no Higgs candidate no Higgs candidate no Higgs candidate

Figure 6.2: Jet—classification scheme for Higgs candidate identification

The performance of the complete Higgs candidate classification procedure is summarized in Table 6.1.
In this context, signal refers to jets labeled as Higgs candidates, while background corresponds to all
other jets. The resulting significance of 0.06 is substantially lower than in event—level classification,
which is expected due to the severe class imbalance: t7H(cC) events are rare, and each event contains
at most two Higgs candidate jets, further reducing the signal-to-background ratio.

It is important to note that this evaluation is performed per jet, not per event. Each jet is treated
independently, and the significance quantifies how well the network can distinguish true Higgs jets
from other jets in the event.

However, the definition of the training labels introduces an additional limitation: there is no exact
ground truth for the origin of reconstructed jets. Instead, jets are labeled using a simplified matching
procedure, which can only approximate their true origin. This unavoidably creates ambiguities,
especially in events with many overlapping jets, and likely explains why standard metrics such as
the accuracy reach very high values like 0.98 even though the actual separation power in terms of
significance remains low.
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6.2 Classifying Jets as Higgs Candidates

Significance 0.06

Binary accuracy  0.98
Signal efficiency 0.40
Signal purity 1.1-107*

Table 6.1: Performance metrics of Higgs candidate classification

Overall, this analysis demonstrates that while the neural network can identify Higgs candidate jets
with some success, the inherently low signal fraction at the jet level limits the achievable significance.
This motivates further exploration of combining jet—level predictions with event—level classification in
future studies.
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CHAPTER [

Summary and Outlook

This thesis explored machine—learning approaches for distinguishing 7H (¢¢) events from the dominant
ttH (bb) and 17 backgrounds. A manually constructed decision tree, based on feature—level observations,
served as the initial reference and achieved a significance of 0.08. This approach was not optimized—
for instance, it does not make use of c—tagging information or finely tuned jet—selection criteria—but
rather provides a simple baseline that exploits only the most obvious discriminating features.

Building upon this, a random forest classifier improved the significance to 0.11, demonstrating the
benefit of machine—learning methods for this classification task. Further enhancement was achieved
through a feed—forward neural network, which reached a value of 0.12 using a single threshold cut and
0.16 with a bin-by-bin approach.

This performance is comparable to that reported in a VH analysis employing a boosted decision
tree, which achieved a significance of 0.16 (neglecting systematic uncertainties) [11]. While VH has
traditionally been regarded as the benchmark channel for probing H — c¢ decays, the results obtained
in this work indicate that the #H (c¢) channel can achieve a similar level of sensitivity. This suggests
that the t7H production mode represents a promising and complementary channel for future searches
targeting the Higgs coupling to charm quarks.

However, these findings are subject to certain limitations, as systematic uncertainties have not been
taken into account yet and minor background contributions—such as t7Z, ttW, tW, and W +jets—were
neglected (Section 2.2).

The multi-class neural network also demonstrates good performance in identifying t7H (bb) events,
which indicates that the same approach could potentially be used to extract the t7H(bb) signal.
However, it should be noted that the raw flavor-tagging network output probabilities used in this study
are not calibrated and, in ATLAS analyses, using uncalibrated probabilities instead of binned D, and
D.. distributions is currently not recommended. This motivates further investigation into probability
calibration [23] to improve the reliability and applicability of this approach.

Overall, analyses of H — c¢ decays remain challenging due to the very low signal-to-background
ratio, making large future data sets essential for improving statistical precision. The study also
confirms that flavor—tagging features are among the most discriminative, indicating that advances in
charm—tagging algorithms could play a key role in enhancing sensitivity. Additionally, the Higgs
candidate neural network could be further improved if truth labels for the origin of jets (from the
Higgs boson, top quarks, or W bosons) were available, allowing the network to learn more precise
jet=level patterns. Further improvements might also come from exploring more sophisticated model
architectures and optimizing hyperparameters.
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