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Figure 1.1: Crab Nebula {1}
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magnetic field

Figure 1.2: Helical trajectory of an electron in the Earth’s magnetic field

Figure 1.3: Victor Hess at a balloon ascent for measuring cosmic radia-
tion {2}

Figure 1.4: Robert Millikan at a take-off of balloon experiments in Bis-
marck, North Dakota (1938) {3}
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Figure 1.5: Tracks of cosmic particles in a cloud chamber {4}

Figure 1.6: Possibilities for experiments in the field of cosmic rays
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Figure 1.7: Gravitational lensing by a massive object:
a) deflection of light,
b) double images,
c) Einstein ring
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Figure 1.8: Latitude effect: geomagnetic and atmospheric cutoff

Figure 1.9: Van Allen belts

observation point

Figure 1.10: East–west effect
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Figure 1.11: Decays of neutral kaons in a cloud chamber {4}

Figure 1.12: Intensity profile of cosmic particles in the atmosphere
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Figure 1.13: Influence of the solar wind on the Earth’s magnetic field
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Figure 1.14: Penzias and Wilson in front of their horn antenna used for
measuring of the blackbody radiation {5}

Figure 1.15: Decay of an excited charm particle (ψ′ → ψ + π+ + π−,
with the subsequent decay ψ → µ+ + µ−)
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Figure 1.16: Supernova explosion SN 1987A in the Tarantula Nebula
{6}

Figure 1.17: Orbital velocities of stars in the Milky Way in comparison
with Keplerian trajectories
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Figure 2.1: Determination of the number of neutrino generations from
Z decay
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Figure 2.2: Creation of coloured gluons by quarks
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Figure 2.3: Rutherford scattering of electrons on protons

Figure 2.4: Rutherford scattering as photon–quark subprocess
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Figure 2.5: Neutrino–neutron scattering by charged currents
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Figure 2.6: Different Feynman diagrams contributing to the scattering
of neutrinos on electrons
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Figure 2.7: Neutron decay

Figure 2.8: Muon decay
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Figure 2.10: Helicity conservation in π+ decay
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Figure 2.11: Lambda decay: Λ → p+ π−
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Figure 2.12: Unification of all different interactions into a Theory of Ev-
erything (GUT – Grand Unified Theory, SUGRA – Super Gravitation)
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Figure 3.3: The process e+e− → µ+µ−

Figure 3.4: Energy spectrum of electrons from muon decay



12

Figure 3.5: Illustration of a Lorentz transformation
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Figure 4.1: Cross section for proton–air interactions

Figure 4.2: Energy loss of charged particles in various targets [2]
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Figure 4.3: Energy loss of muons in standard rock

Figure 4.4: Variation of the Cherenkov angle and photon yield of singly
charged particles in water and air
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Figure 4.5: Production of a Cherenkov ring in a water Cherenkov counter
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Figure 4.6: Domains, in which various photon interactions dominate,
shown in their dependence on the photon energy and the nuclear charge
of the absorber
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Figure 4.7: Schematic of a Compton telescope
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Figure 4.8: Blackbody spectrum of cosmic microwave background pho-
tons

Figure 4.9: Attenuation of the intensity of energetic primary cosmic
photons by interactions with blackbody radiation
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Figure 5.1: Principle of particle acceleration by variable sunspots

Figure 5.2: Sketch of a sunspot pair
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Figure 5.3: Schematics of shock-wave acceleration
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Figure 5.4: Particle acceleration by multiple reflection between two
shock fronts

Figure 5.5: Energy gain of a particle by a reflection from a magnetic
cloud



19

Figure 5.6: Increase of the magnetic field during the gravitational col-
lapse of a star
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matter
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Figure 5.7: Formation of accretion disks in binaries
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Figure 5.8: Acceleration model for relativistic jets powered by a black
hole or an active galactic nucleus (the reactions are only sketched)
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Figure 6.1: Elemental abundance of primary cosmic rays for 1 ≤ Z ≤ 28 Figure 6.2: Elemental abundance of primary cosmic rays for 1 ≤ Z ≤
100



22

Figure 6.3: Energy spectra of the main components of charged primary
cosmic rays Figure 6.4: Energy spectrum of all particles of primary cosmic rays
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Figure 6.5: Energy spectrum of primary cosmic rays scaled by a factor
E3. The data from the Japanese air-shower experiment AGASA agree
well – except at very high energies – with the air-scintillation results
of the Utah High Resolution experiment as far as the spectral shape
is concerned, but they disagree in absolute intensity (AGASA – Akeno
Giant Air Shower Array, HiRes – High Resolution Fly’s Eye)

N
(E

) ·
E

2.
5

–
2

–
1

–
1

1.
5

[m
s

sr
G

eV
]

10
5

10
4

10
3

10
12

10
16

10
14

10
18

10
20

10
2

10

energy per nucleus [eV]

all particle spectrum

knee

ankle toe

g = 2.7

g = 3.0

Figure 6.6: Artist’s impression of the different structures in the primary
cosmic-ray spectrum

Figure 6.7: Sketch of proton and iron-nucleus trajectories in our Milky
Way at 1018 eV
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Figure 6.8: The Super-Kamiokande detector in the Kamioka mine
in Japan {8}

Figure 6.9: Cherenkov pattern of an energetic electron in the Super-
Kamiokande Detector {9}

Figure 6.10: Cherenkov pattern for an energetic muon in the Super-
Kamiokande detector {9}
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Figure 6.11: Momentum spectrum of single-ring electron-like events in
Super-Kamiokande. The solid line represents the Monte Carlo expecta-
tion {9}

Figure 6.12: Momentum spectrum of single-ring muon-like events in
Super-Kamiokande. The solid line represents the Monte Carlo expecta-
tion. The cutoff arround 10 GeV originates from the condition that the
muon tracks must be contained in the detector {9}

Figure 6.13: Oscillation model for νe–νµ mixing for different mixing
angles
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Figure 6.14: Ratio of νµ fluxes as a function of zenith angle as measured
in the Super-Kamiokande experiment cos q cos q
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Figure 6.15: Zenith-angle distribution of electron-like and muon-like
events for the sub-GeV range (a: electrons, b: muons) and the multi-
GeV range (c: electrons, d: muons) in Super-Kamiokande. The dark

grey line is the expectation for the null hypothesis (no oscillations) while
the light grey histogram represents the expectation for oscillations with
maximal mixing (sin2 2θ = 1) and δm2 = 3 × 10−3 eV2 {9}
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Figure 6.16: Ratio of fully contained events measured in the Super-
Kamiokande detector as a function of the reconstructed value of distance
over energy (L/Eν). The lower histogram for µ-like events corresponds
to the expectation for νµ ↔ ντ oscillations with δm2 = 2.2 × 10−3 eV
and sin 2θ = 1 {10}

Figure 6.17: Neutrino spectra from solar fusion processes. The reaction
thresholds of the gallium, chlorine, and water Cherenkov experiments
are indicated. The line fluxes of beryllium isotopes are given in units of
cm−2 s−1
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Figure 6.18: The detector of the chlorine experiment of R. Davis for the
measurement of solar neutrinos. The detector is installed at a depth of
1400m in the Homestake Mine in South Dakota. It is filled with 380 000
liters of perchlorethylene {11}

Figure 6.19: Arrival directions of neutrinos measured in the Super-
Kamiokande experiment



29

Figure 6.20: Reconstructed image of the Sun in the light of solar neu-
trinos. Due to the limited spatial and angular resolution of Super-
Kamiokande, the image of the Sun appears larger than it really is {12}

ne

nee
–

e
–

W
–

Figure 6.21: Feynman diagram responsible for matter oscillation (MSW
effect). Given the energy of solar neutrinos and the fact that there are
only target electrons in the Sun, this process can only occur for νe, but
not for νµ or ντ
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Figure 6.22: Supernova 1987A in the Tarantula Nebula {6}
Figure 6.23: Comparison of cosmic neutrino fluxes in different energy
domains



31

star

p0

g

g

p

p+

rest

m+

nm

pulsar

stellar atmosphere

local density

column density

r

r

(x)

(x)dxò

Figure 6.24: Production mechanism of high-energy neutrinos in a binary
system

Figure 6.25: Competition between production and absorption of photons
and neutrinos in a binary system
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Figure 6.26: Reaction for muon neutrino detection

Figure 6.27: Neutrino production, propagation in intergalactic space,
and detection at Earth



33

data processing
south pole

holes with

photomultipliers

firn layer

ice

with bubbles

m

n

highly

transparent ice

Figure 6.28: Sketch of a neutrino detector for high-energy extragalactic
neutrinos
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Figure 6.29: Setup of the AMANDA detector at the Sourth Pole
(AMANDA – Antarctic Muon And Neutrino Detector Array)
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Figure 6.30: A neutrino-induced upward-going muon recorded in
AMANDA. The size of the symbols is proportional to the measured
Cherenkov light {13}

Figure 6.31: Spectral range of electromagnetic radiation
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Figure 6.32: Production of synchrotron radiation by deflection of
charged particles in a magnetic field
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Figure 6.33: Production of bremsstrahlung by deflection of charged par-
ticles in the Coulomb field of a nucleus

Figure 6.34: Collision of an energetic electron with a low-energy pho-
ton. The electron transfers part of its energy to the photon and is
consequently slowed down

photon photon

p
0

p
+

p
–

proton

nucleus
of the interstellar

medium

Figure 6.35: π0 production in proton interactions and π0 decay into two
photons
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Figure 6.36: e+e− pair annihilation into two photons
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Figure 6.37: Mass attenuation coefficient for photons in a sodium-iodide
scintillation counter

Figure 6.38: Sketch of a satellite experiment for the measurement of γ
rays in the GeV range
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Figure 6.39: Schematic representation of an electron cascade
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Figure 6.40: Monte Carlo simulation of an electromagnetic shower in
the atmosphere initiated by a photon of energy 1014 eV. All secondaries
with energies E ≥ 3 MeV are shown {14}
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Figure 6.41: Emission of Cherenkov radiation in an optical shock wave
by particles traversing a medium of refractive index n with a velocity
exceeding the velocity of light in that medium (v > c/n)

Figure 6.42: Measurement of Cherenkov light of photon-induced elec-
tromagnetic cascades in the atmosphere
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Figure 6.43: Photograph of the air Cherenkov telescope CANGAROO
(CANGAROO – Collaboration of Australia and Nippon (Japan) for a
GAmma-Ray Observatory in the Outback) {15}

Figure 6.44: Dependence of the threshold energy E for γγ absorption
on the energy of the target photons (BB – blackbody radiation, IR –
infrared, VIS – visible spectral range, X – X rays
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Figure 6.45: Measurement of the intensity of galactic γ radiation for
photon energies > 100MeV. The solid line represents the expected γ-
ray intensity on the basis of the column density of interstellar gas in
that direction

Figure 6.46: All-sky survey in the light of γ rays {16}
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Figure 6.47: Light curve of SN 1987A. The solid line corresponds to
complete conversion of 56Co γ rays into the infrared, optical, and ultra-
violet spectral range

Figure 6.48: Light curve of a typcial γ-ray burst
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Figure 6.49: Angular distribution of 2000 γ-ray bursts in galactic coor-
dinates recorded with the BATSE detector (Burst And Transient Source
Experiment) on board the CGRO satellite (Compton Gamma Ray Ob-
servatory) {17}

Figure 6.50: Standard X-ray spectra originating from various production
processes
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Figure 6.51: Cross section through an X-ray telescope with parabolic
and hyperbolic mirrors
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Figure 6.52: Angular-dependent reflection power of metal mirrors

Figure 6.53: Principle of operation of a proportional counter
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Figure 6.54: Photograph of the X-ray satellite ROSAT {18}
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Figure 6.55: Supernova remnant SNR 1572 recorded with the HRI de-
tector (High Resolution Instrument) on board the ROSAT satellite {18}
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Figure 6.56: Sketch of X-ray emission from the Crab pulsar
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Figure 6.57: Sprial galaxy M81 with the supernova SN 1993J. The image
was recorded with the PSPC detector (Position Sensitive Proportional
Counter) of the ROSAT satellite {18}

Figure 6.58: Photo of the XMM X-ray satellite {19}

Figure 6.59: Collision of two merging galactic clusters, each containing
hundreds of galaxies. The site of this catastophic event is Abell 754
at a distance of about 9 million light-years. The photo shows a coded
pressure map of this region, where the galaxies themselves are confined
around the white spots which correspond to regions of high pressure,
followed by decreasing pressure as one goes away from the centers {20}
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Figure 6.60: X-ray emission from the Moon recorded with the PSPC
detector on board of ROSAT. The dark side of the Moon shields the
cosmic X-ray background {18}
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Figure 6.61: Observed changes in periastron time of the binary system
PSR 1913+16 over more than 20 years in comparison to the expectation
based on Einstein’s theory of general relativity. The agreement between
theory and observation is better than 0.1%
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Figure 6.62: Oscillation modes of a spherical antenna upon the impact
of a gravitational wave causing it to undergo quadrupole oscillations
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Figure 7.1: Modulation of the primary spectrum by the 11-year cycle of
the Sun

Figure 7.2: Flux densities of protons and electrons in the radiation belts
of the Earth



49

Figure 7.3: (a) Relation between atmospheric depth (column density)
and pressure
(b) column density of the atmosphere as a function of altitude up to
28 km
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Figure 7.4: Relation between zenith angle and atmospheric depth at sea
level
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Figure 7.5: Identification of singly charged particles in cosmic rays at a
flight altitude of balloons (=̂ 5 g/cm2 residual atmosphere) {21}

Figure 7.6: Transformation of primary cosmic rays in the atmosphere
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Figure 7.7: Decay probabilities for charged pions and kaons in the at-
mosphere as a function of their kinetic energy
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Figure 7.8: Comparison of the development of electromagnetic (100TeV
photon) and hadronic cascades (100TeV proton) in the atmosphere.
Only secondaries with E ≥ 1 GeV are shown {22}
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Figure 7.9: Particle composition in the atmosphere as a function of
atmospheric depth Figure 7.10: Intensities of cosmic-ray particles with energies > 1GeV in

the atmosphere
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Figure 7.11: Momentum spectra of protons and muons at various alti-
tudes in the atmosphere

Figure 7.12: Measurement and identification of charged particles at sea
level {21}
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Figure 7.13: Sea-level muon spectrum in comparison to the pion parent
source spectrum at production

Figure 7.14: Sea-level muon momentum spectra for vertical and inclined
directions

Figure 7.15: Momentum spectrum of muons at sea level for large zenith
angles. In this figure the differential intensity is multiplied by p3

µ
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Figure 7.16: Energy spectra of muon and electron neutrinos for vertical
and horizontal directions

Figure 7.17: Contributions to the energy loss of muons in iron
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Figure 7.18: Range of muons in rock

Figure 7.19: Depth–intensity relation for muons from vertical directions.
The grey-hatched band at large depths represents the flux of neutrino-
induced muons with energies above 2GeV (upper line: horizontal, lower

line: vertical upward neutrino-induced muons) [2]
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Figure 7.20: Zenith-angle distribution of atmospheric muons at depths
of 1500 and 7000 m w.e. Figure 7.21: Variation of the exponent n of the zenith-angle distribution

of muons with depth
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Figure 7.22: Ratio of stopping to penetrating muons as a function of
depth in comparison to some experimental results. (1 ) Stopping atmo-
spheric muons, (2 ) stopping muons from nuclear interactions, (3 ) stop-
ping muons locally produced by photons, (4 ) neutrino-induced stopping
muons, and (5 ) sum of all contributions

Figure 7.23: Muon shower in the ALEPH experiment. Muon tracks
are seen in the central time-projection chamber and in the surrounding
hadron calorimeter. Even though there is a strong 1.5 Tesla magnetic
field perpendicular to the projection shown, the muon tracks are almost
straight indicating their high momenta. Only a knock-on electron pro-
duced in the time-projection chamber by a muon is bent on a circle {23}
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Figure 7.25: Longitudinal shower development of electromagnetic cas-
cades. (The critical energy in air is Ec = 84MeV)
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Figure 7.26: Average longitudinal development of the various compo-
nents of an extensive air shower in the atmosphere Figure 7.27: Average lateral distribution of the shower components for

N = 105 corresponding to E ≈ 1015 eV
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Figure 7.29: Principle of the measurement of the scintillation light of
extensive air showers
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Figure 7.30: Arrangement of mirrors and photomultipliers in the original
Fly’s Eye experiment of the Utah group {25}
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Figure 7.31: Measurement of the isotropic scintillation light of extensive
air showers by Fly’s Eye detectors on board of satellites (‘Air Watch’)
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Figure 7.32: Possible explanation for correlations between distant ex-
tensive air showers
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Figure 8.1: The speed versus distance for a sample of type-Ia supernovae
(from [7])

Figure 8.2: Two galaxies at distances r(t) and R(t) from our own
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Figure 8.3: A sphere of radius R containing many galaxies, with a test
galaxy of mass m at its edge

Figure 8.4: Illustration of the Casimir effect: Only certain wavelengths
fit into the space between the plates. The outside of the plates does not
limit the number of possible frequencies
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Figure 8.5: The scale factor R as a function of time for Ω < 1, Ω > 1,
and Ω = 1
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Figure 8.6: Magnitudes and residuals of supernovae of type Ia as a func-
tion of redshift of their host galaxies in comparison to the expectation
of various models. The data are consistent with a flat universe with
a fraction of about 75% of dark energy. Shown are data from the Su-
pernova Cosmology Project, the Calan/Tololo group, and the Harvard–
Smithsonian Center for Astrophysics (CfA) {26}
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Figure 9.1: The measured gamma-ray flux (data points) along with the
levels predicted to arise from interaction between domains of matter and
antimatter. The upper curve corresponds to domain sizes of 20Mpc, the
lower for 1000Mpc [14, 15]

Figure 9.2: The matter–antimatter symmetry observed at microscopic
scales appears to be broken at the macroscopic level
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Figure 10.1: Feynman diagram for the reaction nνe ↔ pe−

Figure 10.2: The reaction rate Γ(νen↔ e−p) and the expansion rate H
as a function of temperature

Figure 10.3: The ratio nn/np as a function of the temperature
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Figure 10.4: Evolution of the mass and number fractions of primordial
elements. 4He is given as a mass fraction while the other elements are
presented as number fractions

Figure 10.5: Predictions for the abundances of 4He, D, and 7Li as a
function of the baryon-to-photon ratio η. YP is the primordial 4He mass
fraction. Traditionally, the 4He content of the universe is given as mass
fraction, while the other primordial elements are presented as number
fraction (see also the broken vertical scale). The larger box for 7Li/H
includes the systematical error added in quadrature to the statistical
error
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Figure 10.6: The reaction rate Γ(νen↔ e−p) and the expansion rate H
for Nν = 2, 3, and 4 as a function of temperature

Figure 10.7: The predicted 4He mass fraction as a function of η for
different values of Nν
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Figure 11.1: The spectrum of the CMB measured by the COBE satellite
together with the blackbody curve for T = 2.725 K. The error bars have
been enlarged by a factor of 400; any deviations from the Planck curve
are less than 0.005% (from [26])

Figure 11.2: Map of the CMB temperature measured by the COBE
satellite. The dipole pattern is due to the motion of the Earth through
the CMB (from [27]) {27}
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Figure 11.3: Cosmographic map of the CMB temperature measured by
the WMAP satellite with the dipole component subtracted (from [28])
{28}

Figure 11.4: CMB power spectrum. The set of measurements with the
smaller error bars is from WMAP; those with the larger errors represent
an average of measurements prior to WMAP (from [29])



73

Figure 11.5: The horizon distance at the time of last scattering as viewed
by us today in (a) a flat universe (Ω = 1) and (b) an open universe
(Ω < 1)
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Figure 11.6: Predicted CMB power spectra for different values of the cur-
rent total energy density (values computed with the program CMBFAST

[32])
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Figure 12.1: Schematic illustration of the potential V (φ) associated with
the Higgs field φ in the Standard Model of particle physics

Figure 12.2: Schematic illustration of the potential V (φ) first proposed
to provide inflation

Figure 12.3: Schematic illustration of the potential V (φ) for ‘new infla-
tion’
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Figure 12.4: Measurements of the power spectrum P (k) from several
types of observations. The curve shows the prediction of a model with
the spectral index n equal to unity. The parameter h is assumed to be
0.72 (from [42])
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Figure 13.1: Illustration of the relative fractions of dark matter, dark
energy, and baryonic matter

Figure 13.2: Rotational curves of planets in our solar system, 1 Astro-
nomical Unit (AU) = distance Earth to Sun
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Figure 13.6: Image of a distant background galaxy as Einstein ring,
where the foreground galaxy in the center of the figure acts as gravita-
tional lens {29} Figure 13.7: Apparent light curve of a bright star produced by microlens-

ing, when a brown dwarf star passes the line of sight between source and
observer. The brightness excursion is given in terms of magnitudes gen-
erally used in astronomy {30}
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Shown is the first brown object found by the MACHO experiment in
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