Astrophysik mit Teilchen

Jahr der Astronomie 2009

Universität Siegen Claus Grupen

Astrophysik mit Teilchen – p. 1/125

Kosmische Beschleuniger

Übersicht

Astroteilchenphysik

Röntgenastronomie

Neutrinoastronomie

Dunkle Materie

 γ -Astronomie

Gravitationswellen

Kosmische Strahlung

Astrophysik mit Teilchen - p. 3/125

Vom Kristall zum Quark

Astrophysik mit Teilchen – p. 4/125

Quark-Kreislauf

Astrophysik mit Teilchen – p. 5/125

Teilchensorten

Astrophysik mit Teilchen – p. 6/125

Wechselwirkungen

Wechselwirkungen

- Es gibt vier grundlegende Wechselwirkungen:
- starke Wechselwirkung; Stärke 1
- elektromagnetische Wechselwirkung; Stärke 10⁻²
- schwache Wechselwirkung; Stärke 10⁻⁵
- Gravitation; Stärke 10⁻³⁹

Die fünfte Kraft

 \tilde{t}

"Es gibt die slærke Wechselwirkung, dee schwache kraft, die Gracibation und den Elektromagnetiskuns und dann id da noch das gewisse Etwas, das ich Spüce, wenn ich Sie sehe."

before the unification point, the forces are indistinguishable and have symmetry. After the unification point, the forces act differently and the symmetry is broken.

Kosmische Strahlung

Kosmische Strahlung

Kosmische Strahlung

Luftschauer

Photon induzierter Schauer

Eisen induzierter Schauer

Primärspektrum

Primärspektrum

Primärspektrum

Greisen-Zatsepin-Kuzmin Cut-off

Energieverlust von hochenergetischen Protonen durch Wechselwirkungen mit der kosmologischen Hintergrundstrahlung

$$\begin{array}{l} \gamma+p
ightarrow \Delta^+
ightarrow p+\pi^0 \ {
m oder} \ \gamma+n
ightarrow \Delta^0
ightarrow n+\pi^++\pi^-+\pi^0 \ {
m führt} \ {
m zum} \ {
m Abknicken} \ {
m des} \ {
m Primärspektrums} \end{array}$$

Atmosphärische Komponenten

Astrophysik mit Teilchen – p. 21/125

Elektromagnetisches Spektrum

Röntgenstrahlen und γ -Strahlen

Elektromagnetisches Spektrum

Fenster zum All

Fraunhofer Spektren

Astrophysik mit Teilchen – p. 25/125

Fraunhofer Spektrum

Röntgenstrahlen von der Sonne

Rayleigh-Streuung

Wie entsteht Röntgenstrahlung?

Es gibt verschiedene Mechanismen zur Erzeugung von Röntgenstrahlung

- Thermische Strahlung eines heissen Plasmas
- Bremsstrahlung
- Synchrotronstrahlung von Elektronen
- Inverser Compton-Effekt
- Charakteristische Röntgenstrahlung von Atomen

Planck'sches Strahlungsgesetz

•
$$P_{\lambda}(\lambda, T) = \frac{2\pi hc^2}{\lambda^5} \cdot \frac{1}{e^{\frac{hc}{\lambda kT}} - 1}$$

- $P_{\lambda}(\lambda, T)$ spektrale spezifische Ausstrahlung
- h Planck'sches Wirkungsquantum
- c Lichtgeschwindigkeit
- k Boltzmann-Konstante
- T absolute Temperatur der Strahlerfläche, in K
- λ betrachtete Wellenlänge

Formelvereinfachung

"Dies ist die Version für unsere Anfänger!" Astrophysik mit Teilchen – p. 31/125

Planck-Verteilung

Astrophysik mit Teilchen - p. 32/125

Wien'sches Verschiebungsgesetz

- $\bullet \quad \rightarrow Wiensches Verschiebungsgesetz$
- $\lambda_{\max} = \frac{2897,8\,\mu m\,K}{T}$
- λ_{max} Wellenlänge, bei der die größte Strahlungsintensität auftritt, in μ m
- T absolute Temperatur der strahlenden Fläche, in K
- Beispiel: $\lambda_{\max} \cdot T \approx 3000 \mu m K$
- mit Zahlen: T = 6000 Kelvin (Sonne) $\rightarrow \lambda = 0.5 \ \mu \text{ m}$
- mit Zahlen: T = 300 Kelvin (Mensch) $\rightarrow \lambda = 10 \ \mu \text{ m}$
- sehr heisse Sterne \Rightarrow Röntgenstrahlung

Bremsstrahlungsmechanismus

Astrophysik mit Teilchen - p. 34/125

Bremsstrahlung entsteht bei der Ablenkung geladener Teilchen im Coulombfeld von Atomkernen.

• Der Wirkungsquerschnitt gibt die Wahrscheinlichkeit für Bremsstrahlung an. Das Teilchen verliert dabei einen Teil seiner Energie.

•
$$\sigma \sim z^2 \cdot \frac{Z^2}{A} \cdot \frac{1}{m^2} \cdot E$$

- Dabei sind: *z* Ladung des Bremsstrahlung erzeugenden Teilchens
- Z und A Ladung und Masse des Targets
- *m* Masse des Bremsstrahlung erzeugenden Teilchens
- *E* Energie des einfallenden Teilchens

Wegen der $\frac{1}{m^2}$ Abhängigkeit ist Bremsstrahlung nur für Elektronen interessant.

Bremsstrahlung ist auch der Erzeugungsmechanismus für Röntgenstrahlung in Röntgenröhren in der Medizin.

Bei sehr hohen Energien tritt auch Röntgenstrahlung von Myonen und Protonen auf.
Röntgenröhre

Röntgenröhre

Synchrotronstrahlung entsteht bei der Ablenkung von geladenen Teilchen im Magnetfeld ("magnetische Bremsstrahlung").

In der Astroteilchenphysik ist wiederum nur die Synchrotronstrahlung von Elektronen relevant.

Die Abstrahlung *P* von beschleunigten Elektronen ist $P \sim \frac{\gamma^4}{r^2}$, wobei $\gamma = \frac{E}{m \cdot c^2}$ der bekannte Lorentz-Faktor und *r* der Ablenkradius sind.

$$\gamma = \frac{1}{\sqrt{1-\beta^2}}; \beta = v/c \text{ mit } c$$
 - Lichtgeschwindigkeit

Synchrotronmechanismus

- Die erzeugten Photonen werden in einen engen Vorwärtsbereich mit Öffnungswinkel $\sim \frac{1}{\gamma}$ emittiert.
- Die Synchrotronphotonen haben ein breites Frequenzspektrum, mit einer charakterischen Energie $\sim \gamma^3$
- Für 10 GeV Elektronen und einen Ablenkradius von 1000 m ist die charakteristische Energie der Photonen 2,2 keV.

Synchrotronspektrum

Inverse Compton-Streuung

Inverse Compton-Streuung

Durch den Prozeß der inversen Compton-Streuung wird in billiardartigen Stößen ein Teil der Elektronenergie auf ein Photon übertragen.

Der Wirkungsquerschnitt für die inverse Compton-Streuung wächst nur schwach mit der Energie ($\sim lnE/mc^2$).

Der Wirkungsquerschnitt hängt ab von der Photonendichte und Elektronendichte.

Photonenspektren

Astrophysik mit Teilchen – p. 45/125

Röntgenspektren

Charakteristische Röntgenstrahlung

Anregung von Atomen

$$|E_a - E_e| = h\nu = \frac{hc}{\lambda}$$

wobei

- * *E_a* der Energie des Anfangszustandes,
- * *E_e* der Energie des Endzustandes,
- * ν Frequenz des Lichtes ($\nu = \frac{c}{\lambda}$)
- * h Plancksches Wirkungsquantum (6,626 · 10⁻³⁴Js)

Röntgenspektren

Röntgenstrahlen von der Sonne

Röntgenstrahlen von der Sonne

Erdansichten

Die Erde im Lichte von Infrarot-, sichtbarer, ultravioletter, extrem UV, Röntgen- und Gammastrahlung.

Mondansichten

Der Mond im Lichte von Radio-, Mikrowellen-, Infrarot-, sichtbarer, ultravioletter und Röntgenstrahlung.

ROSAT Satellit

Wolter-Teleskop

Wolter-Teleskop-Prinzip

Röntgenphoton-Nachweis

Röntgendetektor

readout

Astrophysik mit Teilchen – p. 57/125

Newton Observatorium

Röntgenstrahlen vom Mond

Strahlung von der Milchstrasse

radio continuum (408 MHz) atomic hydrogen radio continuum (2.5 GHz) molecular hydroge infrared mid-infrared near infrared optical x-ray Ó 🐼 Multiwavelength Milky Way

Astrophysik mit Teilchen – p. 60/125

Galaktische Koordinaten

Spektrum von Vela X1

Krebsnebel-Pulsar

Krebsnebel-Pulsar

Pulsare

Perioden: Drehimpulserhaltung

 $\Theta_{Stern} \cdot \omega_{Stern} = \Theta_{Pulsar} \cdot \omega_{Pulsar}$ $\omega_{Pulsar} = \frac{\Theta_{Stern}}{\Theta_{Pulsar}} \cdot \omega_{Stern}$ Wegen $\Theta \sim m \cdot R^2$ und $\omega = \frac{2 \cdot \pi}{T}$ $T_{Pulsar} = rac{R_{Pulsar}^2}{R_{Sum}^2} \cdot T_{Stern}$ Mit $R_{Stern} = 10^6 km$, $R_{Pulsar} = 20 km$, $T_{Stern} = 1 Monat$ wird $T_{Pulsar} = (\frac{20}{106})^2 \cdot 86400 \cdot 30 = 1 \, msec$

Pulsare und Magnetare

Riesige Magnetfelder

$$\int_{Stern} B_{Stern} \cdot dA_{Stern} = \int_{Pulsar} B_{Pulsar} \cdot dA_{Pulsar}$$
$$B_{Pulsar} = B_{Stern} \cdot \frac{A_{Stern}}{A_{Pulsar}} = B_{Stern} \cdot \frac{R_{Stern}^2}{R_{Pulsar}^2}$$
$$= 0, 1 Tesla \cdot (\frac{10^6}{20})^2 = 2, 5 \cdot 10^8 Tesla$$
$$= 2, 5 \cdot 10^{12} Gauss$$

zum Vergleich: Erdmagnetfeld $\approx 500 \, mGauss = 50 \, \mu Tesla$

Pulsare als Beschleuniger

Rotationsgeschwindigkeiten

$$v = \frac{2 \cdot \pi \cdot R_{Pulsar}}{T_{Pulsar}} = \frac{2 \cdot \pi \cdot 20 \cdot 10^3 m}{10^{-3} s} = 1,257 \cdot 10^8 m/s \approx 0,4 \cdot c$$

elektrisches Feld aus der Lorentzkraft

 $q \cdot \vec{E} = q \cdot \vec{v} x \vec{B}$

Annahme: $\vec{v} \perp \vec{B}$ $\rightarrow \mid \vec{E} \mid = E = v \cdot B = 125 \cdot 10^6 m/s \cdot 2,5 \cdot 10^8 \frac{Vs}{m^2}$ $= 3,14 \cdot 10^{16} \text{ V/m}$

sehr hohe Feldstärken und sehr hohe Energien möglich $E = 3,14 \cdot 10^{16} \text{ eV/m}$

Krebsnebel-Pulsar

DE JAGER ET AL.

Gamma-Satellit

Markarian 421

Der Gamma Himmel

Quellen von Gammastrahlung

- ähnlich wie Röntgenstrahlung wird auch γ-Strahlung durch Bremsstrahlung, Synchrotronstrahlung und inverse Compton-Streuung erzeugt. Dazu kommen noch folgende Produktionsmechanismen:
- π^0 -Zerfall: Neutrale Pionen werden in starken Wechselwirkungen erzeugt; z.B. $p + p \rightarrow p + n + \pi^0$ oder allgemein: $p + Kern \rightarrow p' + Kern' + \pi^+ + \pi^- + \pi^0$
- anschließend $\pi^0 \rightarrow \gamma + \gamma$

π^0 Erzeugung

Quellen von Gammastrahlung

- weitere Quellen: Materie-Antimaterie Annihilationen:
- $e^+ + e^- \rightarrow \gamma + \gamma$ oder
- $p + \bar{p} \rightarrow \pi^+ + \pi^- + \pi^0$
- und Photonen aus Kernübergängen, etwa
- ${}^{60}Co \rightarrow {}^{60}Ni^{**} + e^- + \bar{\nu_e}$
- mit anschießendem Zerfall
- ${}^{60}Ni^{**} \rightarrow {}^{60}Ni + \gamma + \gamma$
- exotische Quellen: Annihilation von Neutralinos

Gamma-Satellit, Prinzip

Gamma-Satellit, Cos-B

Kollapsar

Kollision von Neutronensternen

Endstadien massiver Sterne

Beschleunigung in Jets

Astrophysik mit Teilchen – p. 81/125

GRB-Lichtkurven

Ursprünge der GRB's

Neutrinoastronomie

- Solare Neutrinos (MeV-Bereich)
- Atmosphärische Neutrinos (GeV-Bereich)
- Neutrinooszillationen
- Supernova-Neutrinos (MeV-Bereich)
- Galaktische und extragalaktische Neutrinos (TeV-Bereich)

Solare Neutrinos

Proton - Proton Zyklus

$$p + p \rightarrow d + e^+ + \nu_e + 0,42 \text{ MeV}$$

 $d + p \rightarrow {}_2^3He + \gamma + 5,49 \text{ MeV}$

 ${}_{2}^{3}He + {}_{2}^{3}He \rightarrow {}_{2}^{4}He + 2 p + 12.86 \text{ MeV}$

Hauptprozeß: 85% Wahrscheinlichkeit Lithium-Brennen

 $\begin{array}{l} {}^3_2He + {}^4_2He \rightarrow {}^7_4Be + \gamma \\ {}^7_4Be + e^- \rightarrow {}^7_3Li + \nu_e \\ {}^7_3Li + p \rightarrow 2 \; {}^4_2He \end{array}$

mit 15 % Wahrscheinlichkeit

 $^{3}_{2}He + ^{4}_{2}He \rightarrow ^{7}_{4}Be + \gamma$ ${}^{7}_{4}Be + p \rightarrow {}^{8}_{5}B + \gamma$ ${}^8_5B \rightarrow {}^8_4Be + e^+ + \nu_e + \gamma$ ${}^8_{\scriptscriptstyle A}Be \to 2 \; {}^4_{\scriptscriptstyle 2}He$ mit 0,02 % Wahrscheinlichkeit

Spektren solarer Neutrinos

Homestake Experiment

Neutrinoreaktion im Detektor: $\nu_e + {}^{37}Cl \rightarrow {}^{37}Ar + e^-$ Neutrinonachweis im Detektor $^{37}Ar + e^- \rightarrow ^{37}Cl^* + \nu_e$ mit nachfolgender Emission chrakteristischer Röntgenstrahlung vom ³⁷Cl* analog in den Gallium-Experimenten $\nu_e + 71 Ga \rightarrow 71Ge + e^-$ SNO: $\nu_e + d \rightarrow p + p + e^-$ CC SNO: $\nu_{\alpha} + d \rightarrow p + n + \nu_{\alpha}$; $\alpha = e, \mu, \tau$ NC

Superkamiokande

Superkamiokande

Sudbury Neutrino Observatory

Subury Neutrino Observatory

Neutrinonachweisprinzip

$$\nu_e + p \rightarrow e^+ + n$$

Neutrino Detector

Neutrinos von der Sonne

Astrophysik mit Teilchen - p. 96/125

Sonne im Licht von Neutrinos

Atmosphärische Neutrinos

Atmosphärische Neutrinos stammen hauptsächlich aus Zerfällen geladener Pionen $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$ $\pi^- \rightarrow \mu^- + \bar{\nu}_{\mu}$ und dem anschließenden Zerfall der Myonen $\mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_{\mu}$ $\mu^- \rightarrow e^- + \bar{\nu}_e + \nu_{\mu}$ naiverweise erwartet man ein Verhältnis

$$rac{N(
u_{\mu},ar{
u}_{\mu})}{N(
u_{e},ar{
u}_{e})}pprox 2$$

Superkamiokande

Nachweis Atmosphärischer ν 's

$$\nu_e + e^- \rightarrow \nu_e + e^-$$

 $\nu_e + N \rightarrow e^- + N'$
 $\nu_\mu + N \rightarrow \mu^- + N'$
Nachweis in speziellen Cherenkov-Zählern
RICH - Ring Imaging Cherenkov Counters
Experimentelle Befund: es werden zu
wenig ν_μ 's gefunden

 $rac{N(
u_{\mu}, ar{
u}_{\mu})}{N(
u_{e}, ar{
u}_{e})} pprox 1, 2$

Lösung: Neutrinooszillationen

v-Ereignisse

v-Ereignisse

v-Ereignisse

Astrophysik mit Teilchen – p. 103/125

v-Oszillationen

ν -Oszillationen

ν -Oszillationen

Astrophysik mit Teilchen - p. 106/125

aus der Deleptonisation $e^{-} \perp n \rightarrow 1 \mu \perp n$

 $e^- + p \rightarrow \nu_e + n$

 $\Rightarrow \text{ Neutronenstern}$ 'thermische' Neutrinos $e^+ + e^- \rightarrow Z^0 \rightarrow \nu_{\alpha} + \bar{\nu}_{\alpha}$

wobei α für ν_e , ν_μ und ν_τ stehen

Nachweis von Supernova ν 's

$$ar{
u}_e + p
ightarrow e^+ + n$$

 $ar{
u}_e + e^-
ightarrow ar{
u}_e + e^-$
 $u_e + e^-
ightarrow
u_e + e^-$

d.h. es werden Elektronen und/oder Positronen gemessen

Myonen und Taus können von SN ν 's nicht erzeugt werden.
Neutrinomassen

$$\Delta t = L\left(\frac{1}{v_1} - \frac{1}{v_2}\right) = \frac{L}{c} \left(\frac{1}{\beta_1} - \frac{1}{\beta_2}\right), L - \text{Flugstrecke}$$

$$\Delta t = \frac{L}{c} \left\{ \sqrt{\frac{\gamma_1^2}{\gamma_1^2 - 1}} - \sqrt{\frac{\gamma_2^2}{\gamma_2^2 - 1}} \right\}$$

$$= \frac{L}{c} \left\{ \sqrt{\frac{(E_1/m_0c^2)^2}{(E_1/m_0c^2)^2 - 1}} - \sqrt{\frac{(E_2/m_0c^2)^2}{(E_2/m_0c^2)^2 - 1}} \right\}$$

$$\approx \frac{L}{c} \left\{ \sqrt{1 + \left(\frac{m_0c^2}{E_1}\right)^2} - \sqrt{1 + \left(\frac{m_0c^2}{E_2}\right)^2} \right\}$$

$$= \frac{L}{c} \left\{ 1 + \frac{1}{2} \frac{m_0^2c^4}{E_1^2} + \dots - \left(1 + \frac{1}{2} \frac{m_0^2c^4}{E_2^2} + \dots \right) \right\}$$

Neutrinomassen

$$\Delta t = \frac{L}{c} \left\{ 1 + \frac{1}{2} \frac{m_0^2 c^4}{E_1^2} + \dots - \left(1 + \frac{1}{2} \frac{m_0^2 c^4}{E_2^2} + \dots \right) \right\}$$

$$\Delta t = \frac{L}{2 \cdot c} \cdot m_0^2 c^4 \{ \frac{1}{E_1^2} - \frac{1}{E_2^2} \}$$

$$m_0 = \sqrt{\frac{2 \cdot \Delta t}{L \cdot c^3} \cdot \frac{E_1^2 \cdot E_2^2}{E_2^2 - E_1^2}}$$

mit den SN-Neutrinodaten $\Rightarrow m_0 \le 10 eV/c^2$

Tarantel-Nebel

Supernova 1987A

Supernova 1987A

Supernova 1987A

offene Kreise: IMB-Experiment; volle Kreise: Kamiokande

Energieausstoß

$$E_{total} = \sum_{i=1}^{20} \frac{E_{\nu}^{i}}{\epsilon_{1}(E_{\nu}^{i}) \cdot \epsilon_{2}(E_{\nu}^{i})} \cdot 4 \cdot \pi \cdot r^{2} \cdot f(\nu_{\alpha}, \bar{\nu}_{\alpha})$$

$\approx (6 \pm 2) \cdot 10^{46}$ Joule

$\cong 10^{58}$ emittierte Neutrinos

Lichtkurve 1987A

Das Licht im optischen Spektralbereich geht letztlich auf den radioaktiven Zerfall von Kobalt und Nickel zurück.

Neutrinoflüsse-Übersicht

Galaktische und Extragalaktische v's

Astrophysik mit Teilchen – p. 118/125

Galaktische und Extragalaktische ν 's

AMANDA in der Antarktis

Astrophysik mit Teilchen – p. 120/125

AMANDA Aufbau

Astrophysik mit Teilchen – p. 121/125

AMANDA Ereignis

ICECUBE Aufbau

Neutrino-Himmel

Zusammenfassung

- Röntgen-, γ und Neutrinoastronomie stellen ein neues Fenster zum All dar
- Neutrinos von der Sonne erlauben die Messung nuklearer Prozesse
- Neutrinos gestatten einen Blick in das Innere von Sternen und galaktischen Kernen
- Suche nach den Quellen kosmischer Strahlung
- Verständnis der Bescheunigung kosmischer Strahlung
- Untersuchung extremer Materiezustände